ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of synchronization in power systems: a revelation from communication theory

104   0   0.0 ( 0 )
 نشر من قبل Yitong Li
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The large-scale integration of converter-interfaced resources in electrical power systems raises new stability threats which call for a new theoretic framework for modelling and analysis. Here we present the theory of power-communication isomorphism to solve this grand challenge. It is revealed that an intrinsic communication mechanism governs the synchronisation of all apparatus in power systems based on which a unified representation for heterogeneous apparatus and behaviours is established. We develop the mathematics to model the dynamic interaction within a power-communication isomorphic system which yield a simple stability criterion for complex systems that can be intuitively interpreted and thus conveniently applied in practice.



قيم البحث

اقرأ أيضاً

The synchronization of power generators is an important condition for the proper functioning of a power system, in which the fluctuations in frequency and the phase angle differences between the generators are sufficiently small when subjected to sto chastic disturbances. Serious fluctuations can prompt desynchronization, which may lead to widespread power outages. Here, we derive explicit formulas that relate the fluctuations to the disturbances, and we reveal the role of system parameters. In particular, the relationship between synchronization stability and network theory is established, which characterizes the impact of the network topology on the fluctuations. Our analysis provides guidelines for the system parameter assignments and the design of the network topology to suppress the fluctuations and further enhance the synchronization stability of future smart grids integrated with a large amount of renewable energy.
In this paper, we study scale-free state synchronization of discrete-time homogeneous multi-agent systems (MAS) subject to unknown, nonuniform, and arbitrarily large communication delays. The scale-free protocol utilizes localized information exchang e and is designed solely based on the knowledge of the agents model and does not require any information about the communication network and the size of the network (i.e. number of agents).
The complex representation of real-valued instantaneous power may be written as the sum of two complex powers, one Hermitian and the other non-Hermitian, or complementary. A virtue of this representation is that it consists of a power triangle rotati ng around a fixed phasor, thus clarifying what should be meant by the power triangle. The in-phase and quadrature components of complementary power encode for active and non-active power. When instantaneous power is defined for a Thevenin equivalent circuit, these are time-varying real and reactive power components. These claims hold for sinusoidal voltage and current, and for non-sinusoidal voltage and current. Spectral representations of Hermitian, complementary, and instantaneous power show that, frequency-by-frequency, these powers behave exactly as they behave in the single frequency sinusoidal case. Simple hardware diagrams show how instantaneous active and non-active power may be extracted from metered voltage and current, even in certain non-sinusoidal cases.
Adaptive synchronization protocols for heterogeneous multi-agent network are investigated. The interaction between each of the agents is carried out through a directed graph. We highlight the lack of communication between agents and the presence of u ncertainties in each system among the conventional problems that can arise in cooperative networks. Two methodologies are presented to deal with the uncertainties: A strategy based on robust optimal control and a strategy based on neural networks. Likewise, an input estimation methodology is designed to face the disconnection that any agent may present on the network. These control laws can guarantee synchronization between agents even when there are disturbances or no communication from any agent. Stability and boundary analyzes are performed. Cooperative cruise control simulation results are shown to validate the performance of the proposed control methods.
Given the increasing penetration in renewable generation, the UK power system is experiencing a decline in system inertia and an increase in frequency response (FR) requirements. Faster FR products are a mitigating solution that can cost-effectively meet the system balancing requirements. Thus, this paper proposes a mixed integer linear programming (MILP) unit commitment model which can simultaneously schedule inertial response, mandatory FR, as well as a sub-second FR product - enhanced frequency response (EFR). The model quantifies the value of providing faster reacting FR products in comparison with other response times from typical FR products. The performance and value of EFR are determined in a series of future energy scenarios with respect to the UK market and system conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا