ﻻ يوجد ملخص باللغة العربية
In our companion paper (Brought to Light I: Michea et al. 2021), we reveal spectacular spiral galaxy-like features in deep optical imaging of nine Virgo early-type dwarf galaxies, hidden beneath a dominating smooth stellar disk. Using a new combination of approaches, we find that bar- and spiral-like features contribute 2.2-6.4% of the total flux within 2 R$_{rm{eff}}$. In this study, we conduct high resolution simulations of cluster harassment of passive dwarf galaxies. Following close pericenter passages of the cluster core, tidal triggering generates features in our model disks that bear a striking resemblance to the observed features. However, we find the disks must be highly rotationally supported (V$_{rm{peak}}/sigma_0 sim 3$), much higher than typically observed. We propose that some early-type dwarfs may contain a few percent of their mass in a cold, thin disk which is buried in the light of a hot, diffuse disk, and only revealed when they undergo tidal triggering. The red optical colors of our sample do not indicate any recent significant star formation, and our simulations show that very plunging pericenter passages (r$_{rm{peri}}<0.25$r$_{rm{vir}}$) are required for tidal triggering. Thus, many cluster early-type dwarfs with less plunging orbits may host a yet undetected cold stellar disk component. We discuss possible origin scenarios and consider why similar mass star-forming galaxies in the field are significantly more thin disk dominated than in our cluster sample.
We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low mass ($textrm{M}_{star} < 1 times 10^{10} textrm{M}_{odot}$) passive spiral galaxies are located in t
We present a new spectroscopic study of the faint Milky Way satellite Sagittarius II. Using multi-object spectroscopy from the Fibre Large Array Multi Element Spectrograph, we supplement the dataset of Longeard et al. (2020) with 47 newly observed st
Spiral structure (both flocculent and Grand Design types) is very rarely observed in dwarf galaxies because the formation of spiral arms requires special conditions. In this work we analyze the sample of about 40 dS-galaxies found by scanning by eye
We investigate the stellar populations of passive spiral galaxies as a function of mass and environment, using integral field spectroscopy data from the Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey. Our sample consists of $52$ cl
We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z<0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photo