ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-training strategies and datasets for facial representation learning

361   0   0.0 ( 0 )
 نشر من قبل Adrian Bulat
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

What is the best way to learn a universal face representation? Recent work on Deep Learning in the area of face analysis has focused on supervised learning for specific tasks of interest (e.g. face recognition, facial landmark localization etc.) but has overlooked the overarching question of how to find a facial representation that can be readily adapted to several facial analysis tasks and datasets. To this end, we make the following 4 contributions: (a) we introduce, for the first time, a comprehensive evaluation benchmark for facial representation learning consisting of 5 important face analysis tasks. (b) We systematically investigate two ways of large-scale representation learning applied to faces: supervised and unsupervised pre-training. Importantly, we focus our evaluations on the case of few-shot facial learning. (c) We investigate important properties of the training datasets including their size and quality (labelled, unlabelled or even uncurated). (d) To draw our conclusions, we conducted a very large number of experiments. Our main two findings are: (1) Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significant accuracy improvements for all facial tasks considered. (2) Many existing facial video datasets seem to have a large amount of redundancy. We will release code, pre-trained models and data to facilitate future research.



قيم البحث

اقرأ أيضاً

Semi-Supervised Learning (SSL) has been proved to be an effective way to leverage both labeled and unlabeled data at the same time. Recent semi-supervised approaches focus on deep neural networks and have achieved promising results on several benchma rks: CIFAR10, CIFAR100 and SVHN. However, most of their experiments are based on models trained from scratch instead of pre-trained models. On the other hand, transfer learning has demonstrated its value when the target domain has limited labeled data. Here comes the intuitive question: is it possible to incorporate SSL when fine-tuning a pre-trained model? We comprehensively study how SSL methods starting from pretrained models perform under varying conditions, including training strategies, architecture choice and datasets. From this study, we obtain several interesting and useful observations. While practitioners have had an intuitive understanding of these observations, we do a comprehensive emperical analysis and demonstrate that: (1) the gains from SSL techniques over a fully-supervised baseline are smaller when trained from a pre-trained model than when trained from random initialization, (2) when the domain of the source data used to train the pre-trained model differs significantly from the domain of the target task, the gains from SSL are significantly higher and (3) some SSL methods are able to advance fully-supervised baselines (like Pseudo-Label). We hope our studies can deepen the understanding of SSL research and facilitate the process of developing more effective SSL methods to utilize pre-trained models. Code is now available at github.
Pre-training is a dominant paradigm in computer vision. For example, supervised ImageNet pre-training is commonly used to initialize the backbones of object detection and segmentation models. He et al., however, show a surprising result that ImageNet pre-training has limited impact on COCO object detection. Here we investigate self-training as another method to utilize additional data on the same setup and contrast it against ImageNet pre-training. Our study reveals the generality and flexibility of self-training with three additional insights: 1) stronger data augmentation and more labeled data further diminish the value of pre-training, 2) unlike pre-training, self-training is always helpful when using stronger data augmentation, in both low-data and high-data regimes, and 3) in the case that pre-training is helpful, self-training improves upon pre-training. For example, on the COCO object detection dataset, pre-training benefits when we use one fifth of the labeled data, and hurts accuracy when we use all labeled data. Self-training, on the other hand, shows positive improvements from +1.3 to +3.4AP across all dataset sizes. In other words, self-training works well exactly on the same setup that pre-training does not work (using ImageNet to help COCO). On the PASCAL segmentation dataset, which is a much smaller dataset than COCO, though pre-training does help significantly, self-training improves upon the pre-trained model. On COCO object detection, we achieve 54.3AP, an improvement of +1.5AP over the strongest SpineNet model. On PASCAL segmentation, we achieve 90.5 mIOU, an improvement of +1.5% mIOU over the previous state-of-the-art result by DeepLabv3+.
75 - Ankit Kariryaa 2020
A major challenge in training deep learning models is the lack of high quality and complete datasets. In the paper, we present a masking approach for training deep learning models from a publicly available but incomplete dataset. For example, city of Hamburg, Germany maintains a list of trees along the roads, but this dataset does not contain any information about trees in private homes and parks. To train a deep learning model on such a dataset, we mask the street trees and aerial images with the road network. Road network used for creating the mask is downloaded from OpenStreetMap, and it marks the area where the training data is available. The mask is passed to the model as one of the inputs and it also coats the output. Our model learns to successfully predict trees only in the masked region with 78.4% accuracy.
The success of learning with noisy labels (LNL) methods relies heavily on the success of a warm-up stage where standard supervised training is performed using the full (noisy) training set. In this paper, we identify a warm-up obstacle: the inability of standard warm-up stages to train high quality feature extractors and avert memorization of noisy labels. We propose Contrast to Divide (C2D), a simple framework that solves this problem by pre-training the feature extractor in a self-supervised fashion. Using self-supervised pre-training boosts the performance of existing LNL approaches by drastically reducing the warm-up stages susceptibility to noise level, shortening its duration, and increasing extracted feature quality. C2D works out of the box with existing methods and demonstrates markedly improved performance, especially in the high noise regime, where we get a boost of more than 27% for CIFAR-100 with 90% noise over the previous state of the art. In real-life noise settings, C2D trained on mini-WebVision outperforms previous works both in WebVision and ImageNet validation sets by 3% top-1 accuracy. We perform an in-depth analysis of the framework, including investigating the performance of different pre-training approaches and estimating the effective upper bound of the LNL performance with semi-supervised learning. Code for reproducing our experiments is available at https://github.com/ContrastToDivide/C2D
Almost all the state-of-the-art neural networks for computer vision tasks are trained by (1) pre-training on a large-scale dataset and (2) finetuning on the target dataset. This strategy helps reduce dependence on the target dataset and improves conv ergence rate and generalization on the target task. Although pre-training on large-scale datasets is very useful, its foremost disadvantage is high training cost. To address this, we propose efficient filtering methods to select relevant subsets from the pre-training dataset. Additionally, we discover that lowering image resolutions in the pre-training step offers a great trade-off between cost and performance. We validate our techniques by pre-training on ImageNet in both the unsupervised and supervised settings and finetuning on a diverse collection of target datasets and tasks. Our proposed methods drastically reduce pre-training cost and provide strong performance boosts. Finally, we improve standard ImageNet pre-training by 1-3% by tuning available models on our subsets and pre-training on a dataset filtered from a larger scale dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا