ﻻ يوجد ملخص باللغة العربية
Substantial efforts are invested in improving network security, but the threat landscape is rapidly evolving, particularly with the recent interest in programmable network hardware. We explore a new security threat, from an attacker who has gained control of such devices. While it should be obvious that such attackers can trivially cause substantial damage, the challenge and novelty are in doing so while preventing quick diagnosis by the operator. We find that compromised programmable devices can easily degrade networked applications by orders of magnitude, while evading diagnosis by even the most sophisticated network diagnosis methods in deployment. Two key observations yield this result: (a) targeting a small number of packets is often enough to cause disproportionate performance degradation; and (b) new programmable hardware is an effective enabler of careful, selective targeting of packets. Our results also point to recommendations for minimizing the damage from such attacks, ranging from known, easy to implement techniques like encryption and redundant requests, to more complex considerations that would potentially limit some intended uses of programmable hardware. For data center contexts, we also discuss application-aware monitoring and response as a potential mitigation.
802.11 device fingerprinting is the action of characterizing a target device through its wireless traffic. This results in a signature that may be used for identification, network monitoring or intrusion detection. The fingerprinting method can be ac
Device-to-device (D2D) communication has seen as a major technology to overcome the imminent wireless capacity crunch and to enable new application services. In this paper, we propose a social-aware approach for optimizing D2D communication by exploi
System noise can negatively impact the performance of HPC systems, and the interconnection network is one of the main factors contributing to this problem. To mitigate this effect, adaptive routing sends packets on non-minimal paths if they are less
Virtual reality (VR) is an emerging technology that enables new applications but also introduces privacy risks. In this paper, we focus on Oculus VR (OVR), the leading platform in the VR space, and we provide the first comprehensive analysis of perso
Targeted attacks against network infrastructure are notoriously difficult to guard against. In the case of communication networks, such attacks can leave users vulnerable to censorship and surveillance, even when cryptography is used. Much of the exi