ﻻ يوجد ملخص باللغة العربية
We study epidemic spreading according to a emph{Susceptible-Infectious-Recovered} (for short, emph{SIR}) network model known as the {em Reed-Frost} model, and we establish sharp thresholds for two generative models of {em one-dimensional small-world graphs}, in which graphs are obtained by adding random edges to a cycle. In $3$-regular graphs obtained as the union of a cycle and a random perfect matching, we show that there is a sharp threshold at $.5$ for the contagion probability along edges. In graphs obtained as the union of a cycle and of a $mathcal{G}_{n,c/n}$ ErdH{o}s-Renyi random graph with edge probability $c/n$, we show that there is a sharp threshold $p_c$ for the contagion probability: the value of $p_c$ turns out to be $sqrt 2 -1approx .41$ for the sparse case $c=1$ yielding an expected node degree similar to the random $3$-regular graphs above. In both models, below the threshold we prove that the infection only affects $mathcal{O}(log n)$ nodes, and that above the threshold it affects $Omega(n)$ nodes. These are the first fully rigorous results establishing a phase transition for SIR models (and equivalent percolation problems) in small-world graphs. Although one-dimensional small-world graphs are an idealized and unrealistic network model, a number of realistic qualitative phenomena emerge from our analysis, including the spread of the disease through a sequence of local outbreaks, the danger posed by random connections, and the effect of super-spreader events.
We consider the Maki-Thompson model for the stochastic propagation of a rumour within a population. We extend the original hypothesis of homogenously mixed population by allowing for a small-world network embedding the model. This structure is realiz
We investigate the Gibbs properties of the fuzzy Potts model on the d-dimensional torus with Kac interaction. We use a variational approach for profiles inspired by that of Fernandez, den Hollander and Mart{i}nez for their study of the Gibbs-non-Gibb
A dissipative sandpile model (DSM) is constructed and studied on small world networks (SWN). SWNs are generated adding extra links between two arbitrary sites of a two dimensional square lattice with different shortcut densities $phi$. Three differen
A dissipative stochastic sandpile model is constructed on one and two dimensional small-world networks with different shortcut densities $phi$ where $phi=0$ and $1$ represent a regular lattice and a random network respectively. In the small-world reg
Mapping a complex network to an atomic cluster, the Anderson localization theory is used to obtain the load distribution on a complex network. Based upon an intelligence-limited model we consider the load distribution and the congestion and cascade f