ﻻ يوجد ملخص باللغة العربية
In this paper we study the internal exact controllability for a second order linear evolution equation defined in a two-component domain. On the interface we prescribe a jump of the solution proportional to the conormal derivatives, meanwhile a homogeneous Dirichlet condition is imposed on the exterior boundary. Due to the geometry of the domain, we apply controls through two regions which are neighborhoods of a part of the external boundary and of the whole interface, respectively. Our approach to internal exact controllability consists in proving an observability inequality by using the Lagrange multipliers method. Eventually we apply the Hilbert Uniqueness Method, introduced by J.-L. Lions, which leads to the construction of the exact control through the solution of an adjoint problem. Finally we find a lower bound for the control time depending not only on the geometry of our domain and on the matrix of coefficients of our problem but also on the coefficient of proportionality of the jump with respect to the conormal derivatives.
The aim of this paper is to perform a Stackelberg strategy to control parabolic equations. We have one control, textit{the leader}, that is responsible for a null controllability property; additionally, we have a control textit{the follower} that sol
In a separable Hilbert space $X$, we study the linear evolution equation begin{equation*} u(t)+Au(t)+p(t)Bu(t)=0, end{equation*} where $A$ is an accretive self-adjoint linear operator, $B$ is a bounded linear operator on $X$, and $pin L^2_{loc}(0,+in
This paper concerns a controllability problem for blowup points on heat equation. It can be described as follows: In the absence of control, the solution to the linear heat system globally exists in a bounded domain $Omega$. While, for a given time $
In this paper we present a null controllability result for a degenerate semilinear parabolic equation with first order terms. The main result is obtained after the proof of a new Carleman inequality for a degenerate linear parabolic equation with first order terms.
We address the following problem: given a Riemannian manifold $(M,g)$ and small parameters $varepsilon>0$ and $v>0$, is it possible to find $T>0$ and an absolutely continuous map $x:[0,T]rightarrow M, tmapsto x(t)$ satisfying $|dot{x}|_{infty}leq v$