ﻻ يوجد ملخص باللغة العربية
Measurement of magnetic field strengths in a molecular cloud is essential for determining the criticality of magnetic support against gravitational collapse. In this paper, as part of the JCMT BISTRO survey, we suggest a new application of the Davis-Chandrasekhar-Fermi (DCF) method to estimate the distribution of magnetic field strengths in the OMC-1 region. We use observations of dust polarization emission at 450 $mu$m and 850 $mu$m, and C$^{18}$O (3-2) spectral line data obtained with the JCMT. We estimate the volume density, the velocity dispersion and the polarization angle dispersion in a box, 40$$ $times$ 40$$ (5$times$5 pixels), which moves over the OMC-1 region. By substituting three quantities in each box to the DCF method, we get magnetic field strengths over the OMC-1 region. We note that there are very large uncertainties in inferred field strengths, as discussed in detail in this paper. The field strengths vary from 0.8 to 26.4 mG and their mean value is about 6 mG. Additionally, we obtain maps of the mass-to-flux ratio in units of a critical value and the Alfv$acute{e}$n mach number. The central parts of the BN-KL and South (S) clumps in the OMC-1 region are magnetically supercritical, so the magnetic field cannot support the clumps against gravitational collapse. However, the outer parts of the region are magnetically subcritical. The mean Alfv$acute{e}$n mach number is about 0.4 over the region, which implies that the magnetic pressure exceeds the turbulent pressure in the OMC 1 region.
We present the POL-2 850 $mu$m linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex from the B-fields In STar-forming Region Observations (BISTRO) survey at the James Clerk Maxwell Telescope. We find a trend of decrea
We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar-Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-Forming
We report 850~$mu$m dust polarization observations of a low-mass ($sim$12 $M_{odot}$) starless core in the $rho$ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In
We present the first 850 $mu$m polarization observations in the most active star-forming site of the Rosette Molecular Cloud (RMC, $dsim$1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the JCMT, as part of the
We present the 850 $mu$m polarization observations toward the IC5146 filamentary cloud taken using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and its associated polarimeter (POL-2), mounted on the James Clerk Maxwell Telescope (JCMT),