ترغب بنشر مسار تعليمي؟ اضغط هنا

A database of travel-related behaviors and attitudes before, during, and after COVID-19 in the United States

172   0   0.0 ( 0 )
 نشر من قبل Rishabh Chauhan
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The COVID-19 pandemic has impacted billions of people around the world. To capture some of these impacts in the United States, we are conducting a nationwide longitudinal survey collecting information about travel-related behaviors and attitudes before, during, and after the COVID-19 pandemic. The survey questions cover a wide range of topics including commuting, daily travel, air travel, working from home, online learning, shopping, and risk perception, along with attitudinal, socioeconomic, and demographic information. Version 1.0 of the survey contains 8,723 responses that are publicly available. The survey is deployed over multiple waves to the same respondents to monitor how behaviors and attitudes evolve over time. This article details the methodology adopted for the collection, cleaning, and processing of the data. In addition, the data are weighted to be representative of national and regional demographics. This survey dataset can aid researchers, policymakers, businesses, and government agencies in understanding both the extent of behavioral shifts and the likelihood that these changes will persist after COVID-19.



قيم البحث

اقرأ أيضاً

Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.
Governments issue stay at home orders to reduce the spread of contagious diseases, but the magnitude of such orders effectiveness is uncertain. In the United States these orders were not coordinated at the national level during the coronavirus diseas e 2019 (COVID-19) pandemic, which creates an opportunity to use spatial and temporal variation to measure the policies effect with greater accuracy. Here, we combine data on the timing of stay-at-home orders with daily confirmed COVID-19 cases and fatalities at the county level in the United States. We estimate the effect of stay-at-home orders using a difference-in-differences design that accounts for unmeasured local variation in factors like health systems and demographics and for unmeasured temporal variation in factors like national mitigation actions and access to tests. Compared to counties that did not implement stay-at-home orders, the results show that the orders are associated with a 30.2 percent (11.0 to 45.2) reduction in weekly cases after one week, a 40.0 percent (23.4 to 53.0) reduction after two weeks, and a 48.6 percent (31.1 to 61.7) reduction after three weeks. Stay-at-home orders are also associated with a 59.8 percent (18.3 to 80.2) reduction in weekly fatalities after three weeks. These results suggest that stay-at-home orders reduced confirmed cases by 390,000 (170,000 to 680,000) and fatalities by 41,000 (27,000 to 59,000) within the first three weeks in localities where they were implemented.
Forest fires impact on soil, water and biota resources has been widely researched. Although forest fires profoundly impact the atmosphere and air quality across the ecosystems, much less research has been developed to examine its impact on the curren t pandemic. In-situ air pollution data were utilized to examine the effects of the 2020 forest fire on atmosphere and coronavirus (COVID 19) casualties. The spatiotemporal concentrations of particulate matter (PM2.5 and PM10) and Nitrogen Dioxide (NO2) were collected from August 1 to October 30 for 2020 (fire year) and 2019 (reference year). Both spatial (Multiscale Geographically Weighted Regression) and non spatial (negative binomial regression) regression analysis was performed to assess the adverse effects of fire emission on human health. The in situ data led measurements showed that the maximum increases in PM2.5, PM10, and NO2 concentrations were clustered in the West Coastal fire-prone states during the August 1 to October 30 period. The average concentration of particulate matter (PM2.5 and PM10) and NO2 were increased in all the fire states affected badly by forest fires. The average PM2.5 concentration over the period was recorded as 7.9, 6.3, 5.5, and 5.2 for California, Colorado, Oregon, and Washington in 2019, which was increased up to 24.9, 13.4, 25, and 17 in 2020. Both spatial and non-spatial regression models exhibited a statistically significant association between fire emission and COVID 19 incidents. A total of 30 models were developed for analyzing the spatial non-stationary and local association between the predictor and response factors. All these spatial models have demonstrated a statistically significant association between fire emissions and COVID counts. More thorough research is needed to better understand the complex association between forest fire and human health.
Since December 2019, the world has been witnessing the gigantic effect of an unprecedented global pandemic called Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) - COVID-19. So far, 38,619,674 confirmed cases and 1,093,522 confirmed deaths due to COVID-19 have been reported. In the United States (US), the cases and deaths are recorded as 7,833,851 and 215,199. Several timely researches have discussed the local and global effects of the confounding factors on COVID-19 casualties in the US. However, most of these studies considered little about the time varying associations between and among these factors, which are crucial for understanding the outbreak of the present pandemic. Therefore, this study adopts various relevant approaches, including local and global spatial regression models and machine learning to explore the causal effects of the confounding factors on COVID-19 counts in the contiguous US. Totally five spatial regression models, spatial lag model (SLM), ordinary least square (OLS), spatial error model (SEM), geographically weighted regression (GWR) and multiscale geographically weighted regression (MGWR), are performed at the county scale to take into account the scale effects on modelling. For COVID-19 cases, ethnicity, crime, and income factors are found to be the strongest covariates and explain the maximum model variances. For COVID-19 deaths, both (domestic and international) migration and income factors play a crucial role in explaining spatial differences of COVID-19 death counts across counties. The local coefficient of determination (R2) values derived from the GWR and MGWR models are found very high over the Wisconsin-Indiana-Michigan (the Great Lake) region, as well as several parts of Texas, California, Mississippi and Arkansas.
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا