Planet-planet scattering best explains the eccentricity distribution of extrasolar giant planets. Past literature showed that the orbits of planets evolve due to planet-planet scattering. This work studies the spin evolution of planets in planet-planet scattering in 2-planet systems. Spin can evolve dramatically due to spin-orbit coupling made possible by the evolving spin and orbital precession during the planet-planet scattering phase. The main source of torque to planet spin is the stellar torque, and the total planet-plane torque contribution is negligible. As a consequence of the evolution of the spin, planets can end up with significant obliquity (the angle between a planets own orbit normal and spin axis) like planets in our Solar System.