ترغب بنشر مسار تعليمي؟ اضغط هنا

LASER: Learning a Latent Action Space for Efficient Reinforcement Learning

348   0   0.0 ( 0 )
 نشر من قبل Arthur Allshire
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The process of learning a manipulation task depends strongly on the action space used for exploration: posed in the incorrect action space, solving a task with reinforcement learning can be drastically inefficient. Additionally, similar tasks or instances of the same task family impose latent manifold constraints on the most effective action space: the task family can be best solved with actions in a manifold of the entire action space of the robot. Combining these insights we present LASER, a method to learn latent action spaces for efficient reinforcement learning. LASER factorizes the learning problem into two sub-problems, namely action space learning and policy learning in the new action space. It leverages data from similar manipulation task instances, either from an offline expert or online during policy learning, and learns from these trajectories a mapping from the original to a latent action space. LASER is trained as a variational encoder-decoder model to map raw actions into a disentangled latent action space while maintaining action reconstruction and latent space dynamic consistency. We evaluate LASER on two contact-rich robotic tasks in simulation, and analyze the benefit of policy learning in the generated latent action space. We show improved sample efficiency compared to the original action space from better alignment of the action space to the task space, as we observe with visualizations of the learned action space manifold. Additional details: https://www.pair.toronto.edu/laser



قيم البحث

اقرأ أيضاً

The goal of offline reinforcement learning is to learn a policy from a fixed dataset, without further interactions with the environment. This setting will be an increasingly more important paradigm for real-world applications of reinforcement learnin g such as robotics, in which data collection is slow and potentially dangerous. Existing off-policy algorithms have limited performance on static datasets due to extrapolation errors from out-of-distribution actions. This leads to the challenge of constraining the policy to select actions within the support of the dataset during training. We propose to simply learn the Policy in the Latent Action Space (PLAS) such that this requirement is naturally satisfied. We evaluate our method on continuous control benchmarks in simulation and a deformable object manipulation task with a physical robot. We demonstrate that our method provides competitive performance consistently across various continuous control tasks and different types of datasets, outperforming existing offline reinforcement learning methods with explicit constraints. Videos and code are available at https://sites.google.com/view/latent-policy.
We address the problem of learning hierarchical deep neural network policies for reinforcement learning. In contrast to methods that explicitly restrict or cripple lower layers of a hierarchy to force them to use higher-level modulating signals, each layer in our framework is trained to directly solve the task, but acquires a range of diverse strategies via a maximum entropy reinforcement learning objective. Each layer is also augmented with latent random variables, which are sampled from a prior distribution during the training of that layer. The maximum entropy objective causes these latent variables to be incorporated into the layers policy, and the higher level layer can directly control the behavior of the lower layer through this latent space. Furthermore, by constraining the mapping from latent variables to actions to be invertible, higher layers retain full expressivity: neither the higher layers nor the lower layers are constrained in their behavior. Our experimental evaluation demonstrates that we can improve on the performance of single-layer policies on standard benchmark tasks simply by adding additional layers, and that our method can solve more complex sparse-reward tasks by learning higher-level policies on top of high-entropy skills optimized for simple low-level objectives.
For real-world deployments, it is critical to allow robots to navigate in complex environments autonomously. Traditional methods usually maintain an internal map of the environment, and then design several simple rules, in conjunction with a localiza tion and planning approach, to navigate through the internal map. These approaches often involve a variety of assumptions and prior knowledge. In contrast, recent reinforcement learning (RL) methods can provide a model-free, self-learning mechanism as the robot interacts with an initially unknown environment, but are expensive to deploy in real-world scenarios due to inefficient exploration. In this paper, we focus on efficient navigation with the RL technique and combine the advantages of these two kinds of methods into a rule-based RL (RuRL) algorithm for reducing the sample complexity and cost of time. First, we use the rule of wall-following to generate a closed-loop trajectory. Second, we employ a reduction rule to shrink the trajectory, which in turn effectively reduces the redundant exploration space. Besides, we give the detailed theoretical guarantee that the optimal navigation path is still in the reduced space. Third, in the reduced space, we utilize the Pledge rule to guide the exploration strategy for accelerating the RL process at the early stage. Experiments conducted on real robot navigation problems in hex-grid environments demonstrate that RuRL can achieve improved navigation performance.
Reinforcement Learning (RL) of contact-rich manipulation tasks has yielded impressive results in recent years. While many studies in RL focus on varying the observation space or reward model, few efforts focused on the choice of action space (e.g. jo int or end-effector space, position, velocity, etc.). However, studies in robot motion control indicate that choosing an action space that conforms to the characteristics of the task can simplify exploration and improve robustness to disturbances. This paper studies the effect of different action spaces in deep RL and advocates for Variable Impedance Control in End-effector Space (VICES) as an advantageous action space for constrained and contact-rich tasks. We evaluate multiple action spaces on three prototypical manipulation tasks: Path Following (task with no contact), Door Opening (task with kinematic constraints), and Surface Wiping (task with continuous contact). We show that VICES improves sample efficiency, maintains low energy consumption, and ensures safety across all three experimental setups. Further, RL policies learned with VICES can transfer across different robot models in simulation, and from simulation to real for the same robot. Further information is available at https://stanfordvl.github.io/vices.
69 - Nan Lin , Yuxuan Li , Yujun Zhu 2020
Traditionally, reinforcement learning methods predict the next action based on the current state. However, in many situations, directly applying actions to control systems or robots is dangerous and may lead to unexpected behaviors because action is rather low-level. In this paper, we propose a novel hierarchical reinforcement learning framework without explicit action. Our meta policy tries to manipulate the next optimal state and actual action is produced by the inverse dynamics model. To stabilize the training process, we integrate adversarial learning and information bottleneck into our framework. Under our framework, widely available state-only demonstrations can be exploited effectively for imitation learning. Also, prior knowledge and constraints can be applied to meta policy. We test our algorithm in simulation tasks and its combination with imitation learning. The experimental results show the reliability and robustness of our algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا