ﻻ يوجد ملخص باللغة العربية
In this paper, we propose Selective Output Smoothing Regularization, a novel regularization method for training the Convolutional Neural Networks (CNNs). Inspired by the diverse effects on training from different samples, Selective Output Smoothing Regularization improves the performance by encouraging the model to produce equal logits on incorrect classes when dealing with samples that the model classifies correctly and over-confidently. This plug-and-play regularization method can be conveniently incorporated into almost any CNN-based project without extra hassle. Extensive experiments have shown that Selective Output Smoothing Regularization consistently achieves significant improvement in image classification benchmarks, such as CIFAR-100, Tiny ImageNet, ImageNet, and CUB-200-2011. Particularly, our method obtains 77.30$%$ accuracy on ImageNet with ResNet-50, which gains 1.1$%$ than baseline (76.2$%$). We also empirically demonstrate the ability of our method to make further improvements when combining with other widely used regularization techniques. On Pascal detection, using the SOSR-trained ImageNet classifier as the pretrained model leads to better detection performances. Moreover, we demonstrate the effectiveness of our method in small sample size problem and imbalanced dataset problem.
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional a
Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space. We formulate a prior that incorporates functional constraints about what the output can or cannot be in regions
Crowd scene analysis receives growing attention due to its wide applications. Grasping the accurate crowd location (rather than merely crowd count) is important for spatially identifying high-risk regions in congested scenes. In this paper, we propos
Domains where supervised models are deployed often come with task-specific constraints, such as prior expert knowledge on the ground-truth function, or desiderata like safety and fairness. We introduce a novel probabilistic framework for reasoning wi
Deep neural networks have achieved state-of-the-art performance on various tasks. However, lack of interpretability and transparency makes it easier for malicious attackers to inject trojan backdoor into the neural networks, which will make the model