ﻻ يوجد ملخص باللغة العربية
Development of new techniques to search for particles beyond the standard model is crucial for understanding the ultraviolet completion of particle physics. Several hypothetical particles are predicted to mediate exotic spin-dependent interactions between particles of the standard model that may be accessible to laboratory experiments. However, laboratory searches are mostly conducted for static spin-dependent interactions, with only a few experiments so far addressing spin- and velocity-dependent interactions. Here, we demonstrate a search for exotic spin- and velocity-dependent interactions with a spin-based amplifier. Our technique makes use of hyperpolarized nuclear spins as a pre-amplifier to enhance the effect of pseudo-magnetic field produced by exotic interactions by an amplification factor of > 100. Using such a spin-based amplifier, we establish constraints on the spin- and velocity-dependent interactions between polarized and unpolarized nucleons in the force range of 0.03-100 m. Our limits represent at least two orders of magnitude improvement compared to previous experiments. The established technique can be further extended to investigate other exotic spin-dependent interactions.
We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive non-cryogenic magnetic-field sensor. This approach studies the interactions between o
We investigate the sensitivities of searches for exotic spin-dependent interactions between the polarized nuclear spins of $^3$He and the particles of unpolarized or polarized solid-state masses using the frequency method and the resonance method. In
We present a search for possible spin dependent interactions of the neutron with matter through exchange of spin 1 bosons with axial vector couplings as envisioned in possible extensions of the Standard Model. This was sought using a slow neutron pol
New dynamics from hidden sectors may manifest as long-range forces between visible matter particles. The well-known case of Yukawa-like potentials occurs via the exchange of a single virtual particle. However, more exotic behavior is also possible. W
A liquid-methane ionization chamber is proposed as a setup to search for spin-dependent interactions of dark-matter particles with hydrogen