ﻻ يوجد ملخص باللغة العربية
Due to spectrum scarcity and increasing wireless capacity demands, terahertz (THz) communications at 0.1-10THz and the corresponding spectrum characterization have emerged to meet diverse service requirements in future 5G and 6G wireless systems. However, conventional compressed sensing techniques to reconstruct the original wideband spectrum with under-sampled measurements become inefficient as local spectral correlation is deliberately omitted. Recent works extend communication methods with deep learning-based algorithms but lack strong ties to THz channel properties. This paper introduces novel THz channel-aware spectrum learning solutions that fully disclose the uniqueness of THz channels when performing such ultra-broadband sensing in vehicular environments. Specifically, a joint design of spectrum compression and reconstruction is proposed through a structured sensing matrix and two-phase reconstruction based on high spreading loss and molecular absorption at THz frequencies. An end-to-end learning framework, namely compression and reconstruction network (CRNet), is further developed with the mean-square-error loss function to improve sensing accuracy while significantly reducing computational complexity. Numerical results show that the CRNet solutions outperform the latest generative adversarial network (GAN) realization with a much higher cosine and structure similarity measures, smaller learning errors, and 56% less required training overheads. This THz Ultra-broadband Learning Vehicular Channel-Aware Networking (TULVCAN) work successfully achieves effective THz spectrum learning and hence allows frequency-agile access.
The problem of quality of service (QoS) and jamming-aware communications is considered in an adversarial wireless network subject to external eavesdropping and jamming attacks. To ensure robust communication against jamming, an interference-aware rou
Path-aware networks (PANs) are emerging as an intriguing new paradigm with the potential to significantly improve the dependability and efficiency of networks. However, the benefits of PANs can only be realized if the adoption of such architectures i
As one of the most promising applications in future Internet of Things, Internet of Vehicles (IoV) has been acknowledged as a fundamental technology for developing the Intelligent Transportation Systems in smart cities. With the emergence of the sixt
This paper proposes and demonstrates a PHY-layer design of a real-time prototype that supports Ultra-Reliable Communication (URC) in wireless infrastructure networks. The design makes use of Orthogonal Frequency Division Multiple Access (OFDMA) as a
This paper discusses an efficient approach to design and implement a highly available peer- to-peer system irrespective of peer timing and churn.