ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the AARTFAAC-12 aperture array: radio source counts at 42 and 61 MHz

121   0   0.0 ( 0 )
 نشر من قبل Aleksandar Shulevski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dense aperture arrays provide key benefits in modern astrophysical research. They are flexible, employing cheap receivers, while relying on the ever more sophisticated compute back-end to deal with the complexities of signal processing required for their optimal use. Their advantage is that they offer very large fields of view and are readily scalable to any size, all other things being equal. Since they represent software telescopes, the science cases these arrays can be applied to are quite broad. Here, we describe the calibration and performance of the AARTFAAC-12 instrument, which is composed of the twelve centrally located stations of the LOFAR array. We go into the details of the data acquisition and pre-processing, we describe the newly developed calibration pipeline as well as the noise parameters of the resulting images. We also present the derived radio source counts at 41.7 MHz and 61 MHz.



قيم البحث

اقرأ أيضاً

EMBRACE@Nancay is a prototype instrument consisting of an array of 4608 densely packed antenna elements creating a fully sampled, unblocked aperture. This technology is proposed for the Square Kilometre Array and has the potential of providing an ext remely large field of view making it the ideal survey instrument. We describe the system,calibration procedures, and results from the prototype.
We present a method for calibrating the flux density scale for images generated by the Amsterdam ASTRON Radio Transient Facility And Analysis Centre (AARTFAAC). AARTFAAC produces a stream of all-sky images at a rate of one second in order to survey t he Northern Hemisphere for short duration, low frequency transients, such as the prompt EM counterpart to gravitational wave events, magnetar flares, blazars, and other as of yet unobserved phenomena. Therefore, an independent flux density scaling solution per image is calculated via bootstrapping, comparing the measured apparent brightness of sources in the field to a reference catalogue. However, the lack of accurate flux density measurements of bright sources below 74 MHz necessitated the creation of the AARTFAAC source catalogue, at 60 MHz, which contains 167 sources across the Northern Hemisphere. Using this as a reference results in a sufficiently high number of detected sources in each image to calculate a stable and accurate flux scale per one second snapshot, in real-time.
We report the experimental setup and overall results of the AARTFAAC wide-field radio survey, which consists of observing the sky within 50$^circ$ of Zenith, with a bandwidth of 3.2$,$MHz, at a cadence of 1$,$s, for 545$,$h. This yielded nearly 4 mil lion snapshots, two per second, of on average 4800 square degrees and a sensitivity of around 60$,$Jy. We find two populations of transient events, one originating from PSR$,$B0950$+$08 and one from strong ionospheric lensing events, as well as a single strong candidate for an extragalactic transient, with a peak flux density of $80pm30$$,$Jy and a dispersion measure of $73pm3,mathrm{~pc~cm^{-3}}$, We also set a strong upper limit of 1.1 all-sky per day to the rate of any other populations of fast, bright transients. Lastly, we constrain some previously detected types of transient sources by comparing our detections and limits with other low-frequency radio transient surveys.
We analyse a 154 MHz image made from a 12 h observation with the Murchison Widefield Array (MWA) to determine the noise contribution and behaviour of the source counts down to 30 mJy. The MWA image has a bandwidth of 30.72 MHz, a field-of-view within the half-power contour of the primary beam of 570 deg^2, a resolution of 2.3 arcmin and contains 13,458 sources above 5 sigma. The rms noise in the centre of the image is 4-5 mJy/beam. The MWA counts are in excellent agreement with counts from other instruments and are the most precise ever derived in the flux density range 30-200 mJy due to the sky area covered. Using the deepest available source count data, we find that the MWA image is affected by sidelobe confusion noise at the ~3.5 mJy/beam level, due to incompletely-peeled and out-of-image sources, and classical confusion becomes apparent at ~1.7 mJy/beam. This work highlights that (i) further improvements in ionospheric calibration and deconvolution imaging techniques would be required to probe to the classical confusion limit and (ii) the shape of low-frequency source counts, including any flattening towards lower flux densities, must be determined from deeper ~150 MHz surveys as it cannot be directly inferred from higher frequency data.
We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point ($<$0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the metho dology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above $sim$3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا