Streaming instability in a global patch simulation of protoplanetary disks


الملخص بالإنكليزية

In the recent years, sub/mm observations of protoplanetary disks have discovered an incredible diversity of substructures in the dust emission. An important result was the finding that dust grains of mm size are embedded in very thin dusty disks. This implies that the dust mass fraction in the midplane becomes comparable to the gas, increasing the importance of the interaction between the two components there. We address this problem by means of numerical 2.5D simulations in order to study the gas and dust interaction in fully global stratified disks. To this purpose, we employ the recently developed dust grain module in the PLUTO code. Our model focuses on a typical T Tauri disk model, simulating a short patch of the disk at 10 au which includes grains of constant Stokes number of $St=0.01$ and $St=0.1$, corresponding to grains with sizes of 0.9 cm and 0.9 mm, respectively, for the given disk model. By injecting a constant pebble flux at the outer domain, the system reaches a quasi steady state of turbulence and dust concentrations driven by the streaming instability. For our given setup and using resolutions up to 2500 cells per scale height we resolve the streaming instability, leading to local dust clumping and concentrations. Our results show dust density values of around 10-100 times the gas density with a steady state pebble flux between $3.5 times 10^{-4}$ and $2.5 times 10^{-3} M_{rm Earth}/mathit{year}$ for the models with $mathit{St}=0.01$ and $mathit{St}=0.1$. The grain size and pebble flux for model $mathit{St}=0.01$ compares well with dust evolution models of the first million years of disk evolution. For those grains the scatter opacity dominates the extinction coefficient at mm wavelengths. These types of global dust and gas simulations are a promising tool for studies of the gas and dust evolution at pressure bumps in protoplanetary disks.

تحميل البحث