ﻻ يوجد ملخص باللغة العربية
While autoregressive models excel at image compression, their sample quality is often lacking. Although not realistic, generated images often have high likelihood according to the model, resembling the case of adversarial examples. Inspired by a successful adversarial defense method, we incorporate randomized smoothing into autoregressive generative modeling. We first model a smoothed version of the data distribution, and then reverse the smoothing process to recover the original data distribution. This procedure drastically improves the sample quality of existing autoregressive models on several synthetic and real-world image datasets while obtaining competitive likelihoods on synthetic datasets.
Vision based localization is the problem of inferring the pose of the camera given a single image. One solution to this problem is to learn a deep neural network to infer the pose of a query image after learning on a dataset of images with known pose
We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal image$leftrightarrow$text models, and mathematical problem solving. In all cases autoregressive Transformers smoothly
Machine learning is gaining popularity in a broad range of areas working with geographic data, such as ecology or atmospheric sciences. Here, data often exhibit spatial effects, which can be difficult to learn for neural networks. In this study, we p
High-dimensional generative models have many applications including image compression, multimedia generation, anomaly detection and data completion. State-of-the-art estimators for natural images are autoregressive, decomposing the joint distribution
As machine learning (ML) systems become pervasive, safeguarding their security is critical. Recent work has demonstrated that motivated adversaries could add adversarial perturbations to the test data to mislead ML systems. So far, most research has