ﻻ يوجد ملخص باللغة العربية
Recent observations of the protoplanetary disc surrounding AB Aurigae have revealed the possible presence of two giant planets in the process of forming. The young measured age of $1-4$Myr for this system allows us to place strict time constraints on the formation histories of the observed planets. Hence we may be able to make a crucial distinction between formation through core accretion (CA) or the gravitational instability (GI), as CA formation timescales are typically Myrs whilst formation through GI will occur within the first $approx10^4-10^5$yrs of disc evolution. We focus our analysis on the $4-13$M$_{rm Jup}$ planet observed at $Rapprox30$AU. We find CA formation timescales for such a massive planet typically exceed the systems age. The planets high mass and wide orbit may instead be indicative of formation through GI. We use smoothed particle hydrodynamic simulations to determine the systems critical disc mass for fragmentation, finding $M_{rm d,crit}=0.3$M$_{odot}$. Viscous evolution models of the discs mass history indicate that it was likely massive enough to exceed $M_{rm d,crit}$ in the recent past, thus it is possible that a young AB Aurigae disc may have fragmented to form multiple giant gaseous protoplanets. Calculations of the Jeans mass in an AB Aurigae-like disc find that fragments may initially form with masses $1.6-13.3$M$_{rm Jup}$, consistent with the planets which have been observed. We therefore propose that the inferred planets in the disc surrounding AB Aurigae may be evidence of planet formation through GI.
Context. Planet formation is expected to take place in the first million years of a planetary system through various processes, which remain to be tested through observations. Aims. With the recent discovery, using ALMA, of two gaseous spiral arms in
Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the
We present evidence that the recently discovered, directly-imaged planet HD 131399 Ab is a background star with non-zero proper motion. From new JHK1L photometry and spectroscopy obtained with the Gemini Planet Imager, VLT/SPHERE, and Keck/NIRC2, and
Recent direct imaging discoveries suggest a new class of massive, distant planets around A stars. These widely separated giants have been interpreted as signs of planet formation driven by gravitational instability, but the viability of this mechanis
We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.1; 14 au) images in $^{12}$CO (J=2-1) emission and in dust continuum at the wavelength of 1.3 mm. The contin