ترغب بنشر مسار تعليمي؟ اضغط هنا

IEEE 802.11bf: Toward Ubiquitous Wi-Fi Sensing

80   0   0.0 ( 0 )
 نشر من قبل Francesco Restuccia
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wi-Fi is among the most successful wireless technologies ever invented. As Wi-Fi becomes more and more present in public and private spaces, it becomes natural to leverage its ubiquitousness to implement groundbreaking wireless sensing applications such as human presence detection, activity recognition, and object tracking, just to name a few. This paper reports ongoing efforts by the IEEE 802.11bf Task Group (TGbf), which is defining the appropriate modifications to existing Wi-Fi standards to enhance sensing capabilities through 802.11-compliant waveforms. We summarize objectives and timeline of TGbf, and discuss some of the most interesting proposed technical features discussed so far. We also introduce a roadmap of research challenges pertaining to Wi-Fi sensing and its integration with future Wi-Fi technologies and emerging spectrum bands, hoping to elicit further activities by both the research community and TGbf.



قيم البحث

اقرأ أيضاً

With the emergence of 4k/8k video, the throughput requirement of video delivery will keep grow to tens of Gbps. Other new high-throughput and low-latency video applications including augmented reality (AR), virtual reality (VR), and online gaming, ar e also proliferating. Due to the related stringent requirements, supporting these applications over wireless local area network (WLAN) is far beyond the capabilities of the new WLAN standard -- IEEE 802.11ax. To meet these emerging demands, the IEEE 802.11 will release a new amendment standard IEEE 802.11be -- Extremely High Throughput (EHT), also known as Wireless-Fidelity (Wi-Fi) 7. This article provides the comprehensive survey on the key medium access control (MAC) layer techniques and physical layer (PHY) techniques being discussed in the EHT task group, including the channelization and tone plan, multiple resource units (multi-RU) support, 4096 quadrature amplitude modulation (4096-QAM), preamble designs, multiple link operations (e.g., multi-link aggregation and channel access), multiple input multiple output (MIMO) enhancement, multiple access point (multi-AP) coordination (e.g., multi-AP joint transmission), enhanced link adaptation and retransmission protocols (e.g., hybrid automatic repeat request (HARQ)). This survey covers both the critical technologies being discussed in EHT standard and the related latest progresses from worldwide research. Besides, the potential developments beyond EHT are discussed to provide some possible future research directions for WLAN.
We show experimentally that workload-based AP-STA associations can improve system throughput significantly. We present a predictive model that guides optimal resource allocations in dense Wi-Fi networks and achieves 72-77% of the optimal throughput w ith varying training data set sizes using a 3-day trace of real cable modem traffic.
Real-time measurements on the occupancy status of indoor and outdoor spaces can be exploited in many scenarios (HVAC and lighting system control, building energy optimization, allocation and reservation of spaces, etc.). Traditional systems for occup ancy estimation rely on environmental sensors (CO2, temperature, humidity) or video cameras. In this paper, we depart from such traditional approaches and propose a novel occupancy estimation system which is based on the capture of Wi-Fi management packets from users devices. The system, implemented on a low-cost ESP8266 microcontroller, leverages a supervised learning model to adapt to different spaces and transmits occupancy information through the MQTT protocol to a web-based dashboard. Experimental results demonstrate the validity of the proposed solution in four different indoor university spaces.
In this paper we focus on the problem of human activity recognition without identification of the individuals in a scene. We consider using Wi-Fi signals to detect certain human mobility behaviors such as stationary, walking, or running. The main obj ective is to successfully detect these behaviors for the individuals and based on that enable detection of the crowds overall mobility behavior. We propose a method which infers mobility behaviors in two stages: from Wi-Fi signals to trajectories and from trajectories to the mobility behaviors. We evaluate the applicability of the proposed approach using the StudentLife dataset which contains Wi-Fi, GPS, and accelerometer measurements collected from smartphones of 49 students within a three-month period. The experimental results indicate that there is high correlation between stability of Wi-Fi signals and mobility activity. This unique characteristic provides sufficient evidences to extend the proposed idea to mobility analytics of groups of people in the future.
Smartphone apps for exposure notification and contact tracing have been shown to be effective in controlling the COVID-19 pandemic. However, Bluetooth Low Energy tokens similar to those broadcast by existing apps can still be picked up far away from the transmitting device. In this paper, we present a new class of methods for detecting whether or not two Wi-Fi-enabled devices are in immediate physical proximity, i.e. 2 or fewer meters apart, as established by the U.S. Centers for Disease Control and Prevention (CDC). Our goal is to enhance the accuracy of smartphone-based exposure notification and contact tracing systems. We present a set of binary machine learning classifiers that take as input pairs of Wi-Fi RSSI fingerprints. We empirically verify that a single classifier cannot generalize well to a range of different environments with vastly different numbers of detectable Wi-Fi Access Points (APs). However, specialized classifiers, tailored to situations where the number of detectable APs falls within a certain range, are able to detect immediate physical proximity significantly more accurately. As such, we design three classifiers for situations with low, medium, and high numbers of detectable APs. These classifiers distinguish between pairs of RSSI fingerprints recorded 2 or fewer meters apart and pairs recorded further apart but still in Bluetooth range. We characterize their balanced accuracy for this task to be between 66.8% and 77.8%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا