ﻻ يوجد ملخص باللغة العربية
The Renormalization Group encodes three concepts that could be key to accelerate progress in quantum gravity. First, it provides a micro-macro connection that could connect microscopic spacetime physics to phenomenology at observationally accessible scales. Second, it enables a search for universality classes that could link diverse quantum-gravity approaches and allow us to discover that distinct approaches could encode the same physics in mathematically distinct structures. Third, it enables the emergence of symmetries at fixed points of the Renormalization Group flow, providing a way for spacetime symmetries to emerge from settings in which these are broken at intermediate steps of the construction. These three concepts make the Renormalization Group an attractive method and conceptual underpinning of quantum gravity. Yet, in its traditional setup as a local coarse-graining, it could appear at odds with concepts like background independence that are expected of quantum gravity. Within the last years, several approaches to quantum gravity have found ways how these seeming contradictions could be reconciled and the power of the Renormalization Group approach unleashed in quantum gravity. This special issue brings together research papers and reviews from a broad range of quantum gravity approaches, providing a partial snapshot of this evolving field.
A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underl
Within the discrete gauge theory which is the basis of spin foam models, the problem of macroscopically faithful coarse graining is studied. Macroscopic data is identified; it contains the holonomy evaluation along a discrete set of loops and the hom
Small violations of spacetime symmetries have recently been identified as promising Planck-scale signals. This talk reviews how such violations can arise in various approaches to quantum gravity, how the emergent low-energy effects can be described w
We formulate Eddingtons affine gravity in a spacetime which is immersed in a larger eight dimensional space endowed with a hypercomplex structure. The dynamical equation of the first immersed Ricci-type tensor leads to gravitational field equations w
The first mathematically consistent exact equations of quantum gravity in the Heisenberg representation and Hamilton gauge are obtained. It is shown that the path integral over the canonical variables in the Hamilton gauge is mathematically equivalen