ﻻ يوجد ملخص باللغة العربية
We consider the dynamic large deviation behaviour of Kacs collisional process for a range of initial conditions including equilibrium. We prove an upper bound with a rate function of the type which has previously been found for kinetic large deviation problems, and a matching lower bound restricted to a class of sufficiently good paths. However, we are able to show by an explicit counterexample that the predicted rate function does not extend to a global lower bound: even though the particle system almost surely conserves energy, large deviation behaviour includes solutions to the Boltzmann equation which do not conserve energy, as found by Lu and Wennberg, and these occur strictly more rarely than predicted by the proposed rate function. At the level of the particle system, this occurs because a macroscopic proportion of energy can concentrate in $mathfrak{o}(N)$ particles with probability $e^{-mathcal{O}(N)}$.
This paper considers the space homogenous Boltzmann equation with Maxwell molecules and arbitrary angular distribution. Following Kacs program, emphasis is laid on the the associated conservative Kacs stochastic $N$-particle system, a Markov process
We prove the existence of nonnegative martingale solutions to a class of stochastic degenerate-parabolic fourth-order PDEs arising in surface-tension driven thin-film flow influenced by thermal noise. The construction applies to a range of mobilites
We prove the existence and uniqueness of measure solutions to the conservative renewal equation and analyze their long time behavior. The solutions are built by using a duality approach. This construction is well suited to apply the Doeblins argument
It is known that in the parameters range $-2 leq gamma <-2s$ spectral gap does not exist for the linearized Boltzmann operator without cutoff but it does for the linearized Landau operator. This paper is devoted to the understanding of the formation
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasser