ترغب بنشر مسار تعليمي؟ اضغط هنا

RCT: Resource Constrained Training for Edge AI

329   0   0.0 ( 0 )
 نشر من قبل Tian Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural networks training on edge terminals is essential for edge AI computing, which needs to be adaptive to evolving environment. Quantised models can efficiently run on edge devices, but existing training methods for these compact models are designed to run on powerful servers with abundant memory and energy budget. For example, quantisation-aware training (QAT) method involves two copies of model parameters, which is usually beyond the capacity of on-chip memory in edge devices. Data movement between off-chip and on-chip memory is energy demanding as well. The resource requirements are trivial for powerful servers, but critical for edge devices. To mitigate these issues, We propose Resource Constrained Training (RCT). RCT only keeps a quantised model throughout the training, so that the memory requirements for model parameters in training is reduced. It adjusts per-layer bitwidth dynamically in order to save energy when a model can learn effectively with lower precision. We carry out experiments with representative models and tasks in image application and natural language processing. Experiments show that RCT saves more than 86% energy for General Matrix Multiply (GEMM) and saves more than 46% memory for model parameters, with limited accuracy loss. Comparing with QAT-based method, RCT saves about half of energy on moving model parameters.



قيم البحث

اقرأ أيضاً

In the recent past, the success of Neural Architecture Search (NAS) has enabled researchers to broadly explore the design space using learning-based methods. Apart from finding better neural network architectures, the idea of automation has also insp ired to improve their implementations on hardware. While some practices of hardware machine-learning automation have achieved remarkable performance, the traditional design concept is still followed: a network architecture is first structured with excellent test accuracy, and then compressed and optimized to fit into a target platform. Such a design flow will easily lead to inferior local-optimal solutions. To address this problem, we propose a new framework to jointly explore the space of neural architecture, hardware implementation, and quantization. Our objective is to find a quantized architecture with the highest accuracy that is implementable on given hardware specifications. We employ FPGAs to implement and test our designs with limited loop-up tables (LUTs) and required throughput. Compared to the separate design/searching methods, our framework has demonstrated much better performance under strict specifications and generated designs of higher accuracy by 18% to 68% in the task of classifying CIFAR10 images. With 30,000 LUTs, a light-weight design is found to achieve 82.98% accuracy and 1293 images/second throughput, compared to which, under the same constraints, the traditional method even fails to find a valid solution.
137 - Jiawei Shao , Jun Zhang 2020
The recent breakthrough in artificial intelligence (AI), especially deep neural networks (DNNs), has affected every branch of science and technology. Particularly, edge AI has been envisioned as a major application scenario to provide DNN-based servi ces at edge devices. This article presents effective methods for edge inference at resource-constrained devices. It focuses on device-edge co-inference, assisted by an edge computing server, and investigates a critical trade-off among the computation cost of the on-device model and the communication cost of forwarding the intermediate feature to the edge server. A three-step framework is proposed for the effective inference: (1) model split point selection to determine the on-device model, (2) communication-aware model compression to reduce the on-device computation and the resulting communication overhead simultaneously, and (3) task-oriented encoding of the intermediate feature to further reduce the communication overhead. Experiments demonstrate that our proposed framework achieves a better trade-off and significantly reduces the inference latency than baseline methods.
The ubiquitous use of IoT and machine learning applications is creating large amounts of data that require accurate and real-time processing. Although edge-based smart data processing can be enabled by deploying pretrained models, the energy and memo ry constraints of edge devices necessitate distributed deep learning between the edge and the cloud for complex data. In this paper, we propose a distributed AI system to exploit both the edge and the cloud for training and inference. We propose a new architecture, MEANet, with a main block, an extension block, and an adaptive block for the edge. The inference process can terminate at either the main block, the extension block, or the cloud. The MEANet is trained to categorize inputs into easy/hard/complex classes. The main block identifies instances of easy/hard classes and classifies easy classes with high confidence. Only data with high probabilities of belonging to hard classes would be sent to the extension block for prediction. Further, only if the neural network at the edge shows low confidence in the prediction, the instance is considered complex and sent to the cloud for further processing. The training technique lends to the majority of inference on edge devices while going to the cloud only for a small set of complex jobs, as determined by the edge. The performance of the proposed system is evaluated via extensive experiments using modified models of ResNets and MobileNetV2 on CIFAR-100 and ImageNet datasets. The results show that the proposed distributed model has improved accuracy and energy consumption, indicating its capacity to adapt.
There has been much interest in deploying deep learning algorithms on low-powered devices, including smartphones, drones, and medical sensors. However, full-scale deep neural networks are often too resource-intensive in terms of energy and storage. A s a result, the bulk part of the machine learning operation is therefore often carried out on an edge server, where the data is compressed and transmitted. However, compressing data (such as images) leads to transmitting information irrelevant to the supervised task. Another popular approach is to split the deep network between the device and the server while compressing intermediate features. To date, however, such split computing strategies have barely outperformed the aforementioned naive data compression baselines due to their inefficient approaches to feature compression. This paper adopts ideas from knowledge distillation and neural image compression to compress intermediate feature representations more efficiently. Our supervised compression approach uses a teacher model and a student model with a stochastic bottleneck and learnable prior for entropy coding. We compare our approach to various neural image and feature compression baselines in three vision tasks and found that it achieves better supervised rate-distortion performance while also maintaining smaller end-to-end latency. We furthermore show that the learned feature representations can be tuned to serve multiple downstream tasks.
The computation and storage requirements for Deep Neural Networks (DNNs) are usually high. This issue limits their deployability on ubiquitous computing devices such as smart phones, wearables and autonomous drones. In this paper, we propose ternary neural networks (TNNs) in order to make deep learning more resource-efficient. We train these TNNs using a teacher-student approach based on a novel, layer-wise greedy methodology. Thanks to our two-stage training procedure, the teacher network is still able to use state-of-the-art methods such as dropout and batch normalization to increase accuracy and reduce training time. Using only ternary weights and activations, the student ternary network learns to mimic the behavior of its teacher network without using any multiplication. Unlike its -1,1 binary counterparts, a ternary neural network inherently prunes the smaller weights by setting them to zero during training. This makes them sparser and thus more energy-efficient. We design a purpose-built hardware architecture for TNNs and implement it on FPGA and ASIC. We evaluate TNNs on several benchmark datasets and demonstrate up to 3.1x better energy efficiency with respect to the state of the art while also improving accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا