ﻻ يوجد ملخص باللغة العربية
Conventional Machine Reading Comprehension (MRC) has been well-addressed by pattern matching, but the ability of commonsense reasoning remains a gap between humans and machines. Previous methods tackle this problem by enriching word representations via pre-trained Knowledge Graph Embeddings (KGE). However, they make limited use of a large number of connections between nodes in Knowledge Graphs (KG), which could be pivotal cues to build the commonsense reasoning chains. In this paper, we propose a Plug-and-play module to IncorporatE Connection information for commonsEnse Reasoning (PIECER). Beyond enriching word representations with knowledge embeddings, PIECER constructs a joint query-passage graph to explicitly guide commonsense reasoning by the knowledge-oriented connections between words. Further, PIECER has high generalizability since it can be plugged into suitable positions in any MRC model. Experimental results on ReCoRD, a large-scale public MRC dataset requiring commonsense reasoning, show that PIECER introduces stable performance improvements for four representative base MRC models, especially in low-resource settings.
In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we
Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by trans
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language
Reasoning machine reading comprehension (R-MRC) aims to answer complex questions that require discrete reasoning based on text. To support discrete reasoning, evidence, typically the concise textual fragments that describe question-related facts, inc
Recent powerful pre-trained language models have achieved remarkable performance on most of the popular datasets for reading comprehension. It is time to introduce more challenging datasets to push the development of this field towards more comprehen