ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant subspaces of elliptic systems II: spectral theory

79   0   0.0 ( 0 )
 نشر من قبل Dmitri Vassiliev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider an elliptic self-adjoint pseudodifferential operator $A$ acting on $m$-columns of half-densities on a closed manifold $M$, whose principal symbol is assumed to have simple eigenvalues. We show that the spectrum of $A$ decomposes, up to an error with superpolynomial decay, into $m$ distinct series, each associated with one of the eigenvalues of the principal symbol of $A$. These spectral results are then applied to the study of propagation of singularities in hyperbolic systems. The key technical ingredient is the use of the carefully devised pseudodifferential projections introduced in the first part of this work, which decompose $L^2(M)$ into almost-orthogonal almost-invariant subspaces under the action of both $A$ and the hyperbolic evolution.



قيم البحث

اقرأ أيضاً

Consider an elliptic self-adjoint pseudodifferential operator $A$ acting on $m$-columns of half-densities on a closed manifold $M$, whose principal symbol is assumed to have simple eigenvalues. We show existence and uniqueness of $m$ orthonormal pseu dodifferential projections commuting with the operator $A$ and provide an algorithm for the computation of their full symbols, as well as explicit closed formulae for their subprincipal symbols. Pseudodifferential projections yield a decomposition of $L^2(M)$ into invariant subspaces under the action of $A$ modulo $C^infty(M)$. Furthermore, they allow us to decompose $A$ into $m$ distinct sign definite pseudodifferential operators. Finally, we represent the modulus and the Heaviside function of the operator $A$ in terms of pseudodifferential projections and discuss physically meaningful examples.
117 - Matteo Capoferri 2021
Consider an elliptic self-adjoint pseudodifferential operator $A$ acting on $m$-columns of half-densities on a closed manifold $M$, whose principal symbol is assumed to have simple eigenvalues. Relying on a basis of pseudodifferential projections com muting with $A$, we construct an almost-unitary pseudodifferential operator that diagonalizes $A$ modulo an infinitely smoothing operator. We provide an invariant algorithm for the computation of its full symbol, as well as an explicit closed formula for its subprincipal symbol. Finally, we give a quantitative description of the relation between the spectrum of $A$ and the spectrum of its approximate diagonalization, and discuss the implications at the level of spectral asymptotics.
We discuss counterexamples to the validity of the weak Maximum Principle for linear elliptic systems with zero and first order couplings and prove, through a suitable reduction to a nonlinear scalar equation, a quite general result showing that some algebraic condition on the structure of gradient couplings and a cooperativity condition on the matrix of zero order couplings guarantee the existence of invariant cones in the sense of Weinberger [21].
We derive continuum limits of atomistic models in the realm of nonlinear elasticity theory rigorously as the interatomic distances tend to zero. In particular we obtain an integral functional acting on the deformation gradient in the continuum theory which depends on the underlying atomistic interaction potentials and the lattice geometry. The interaction potentials to which our theory applies are general finite range models on multilattices which in particular can also account for multi-pole interactions and bond-angle dependent contributions. Furthermore, we discuss the applicability of the Cauchy-Born rule. Our class of limiting energy densities consists of general quasiconvex functions and the class of linearized limiting energies consistent with the Cauchy-Born rule consists of general quadratic forms not restricted by the Cauchy relations.
Let $A$ be a self-adjoint operator on a Hilbert space $fH$. Assume that the spectrum of $A$ consists of two disjoint components $sigma_0$ and $sigma_1$. Let $V$ be a bounded operator on $fH$, off-diagonal and $J$-self-adjoint with respect to the orth ogonal decomposition $fH=fH_0oplusfH_1$ where $fH_0$ and $fH_1$ are the spectral subspaces of $A$ associated with the spectral sets $sigma_0$ and $sigma_1$, respectively. We find (optimal) conditions on $V$ guaranteeing that the perturbed operator $L=A+V$ is similar to a self-adjoint operator. Moreover, we prove a number of (sharp) norm bounds on variation of the spectral subspaces of $A$ under the perturbation $V$. Some of the results obtained are reformulated in terms of the Krein space theory. As an example, the quantum harmonic oscillator under a PT-symmetric perturbation is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا