ﻻ يوجد ملخص باللغة العربية
Classical regression has a simple geometric description in terms of a projection of the training labels onto the column space of the design matrix. However, for over-parameterized models -- where the number of fit parameters is large enough to perfectly fit the training data -- this picture becomes uninformative. Here, we present an alternative geometric interpretation of regression that applies to both under- and over-parameterized models. Unlike the classical picture which takes place in the space of training labels, our new picture resides in the space of input features. This new feature-based perspective provides a natural geometric interpretation of the double-descent phenomenon in the context of bias and variance, explaining why it can occur even in the absence of label noise. Furthermore, we show that adversarial perturbations -- small perturbations to the input features that result in large changes in label values -- are a generic feature of biased models, arising from the underlying geometry. We demonstrate these ideas by analyzing three minimal models for over-parameterized linear least squares regression: without basis functions (input features equal model features) and with linear or nonlinear basis functions (two-layer neural networks with linear or nonlinear activation functions, respectively).
The bias-variance trade-off is a central concept in supervised learning. In classical statistics, increasing the complexity of a model (e.g., number of parameters) reduces bias but also increases variance. Until recently, it was commonly believed tha
Over-parameterization and adaptive methods have played a crucial role in the success of deep learning in the last decade. The widespread use of over-parameterization has forced us to rethink generalization by bringing forth new phenomena, such as imp
In this manuscript we consider Kernel Ridge Regression (KRR) under the Gaussian design. Exponents for the decay of the excess generalization error of KRR have been reported in various works under the assumption of power-law decay of eigenvalues of th
We consider whether algorithmic choices in over-parameterized linear matrix factorization introduce implicit regularization. We focus on noiseless matrix sensing over rank-$r$ positive semi-definite (PSD) matrices in $mathbb{R}^{n times n}$, with a s
Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor