Topological materials have drawn increasing attention owing to their rich quantum properties. A notable highlight is the observation of a large intrinsic anomalous Hall effect (AHE) in Weyl and nodal-line semimetals. However, how the electronic topology of the carriers contributes to the transport and whether it can be externally tuned remains elusive. In this study, we demonstrate a magnetic-field-induced switching of band topology in $alpha$-EuP$_3$, a magnetic semimetal with a layered crystal structure derived from black phosphorus. Such topology switching is shown to be accompanied by a crossover from paramagnetic to ferromagnetic, manifesting as a giant AHE in the magnetoresistance when the magnetic field is perpendicular to the crystalline mirror plane. Electronic structure calculations further indicate that, depending on the direction of the magnetic field, two distinct topological phases, Weyl semimetal and topological nodal-line semimetal, are stabilized via the exchange coupling between Eu-4$f$ moments and conducting carriers. Our findings provide a realistic solution for external control and manipulation of band topology, enriching the functional aspects of topological materials and furthering the possibility of practical applications for topological electronics.