ﻻ يوجد ملخص باللغة العربية
Topological materials have drawn increasing attention owing to their rich quantum properties. A notable highlight is the observation of a large intrinsic anomalous Hall effect (AHE) in Weyl and nodal-line semimetals. However, how the electronic topology of the carriers contributes to the transport and whether it can be externally tuned remains elusive. In this study, we demonstrate a magnetic-field-induced switching of band topology in $alpha$-EuP$_3$, a magnetic semimetal with a layered crystal structure derived from black phosphorus. Such topology switching is shown to be accompanied by a crossover from paramagnetic to ferromagnetic, manifesting as a giant AHE in the magnetoresistance when the magnetic field is perpendicular to the crystalline mirror plane. Electronic structure calculations further indicate that, depending on the direction of the magnetic field, two distinct topological phases, Weyl semimetal and topological nodal-line semimetal, are stabilized via the exchange coupling between Eu-4$f$ moments and conducting carriers. Our findings provide a realistic solution for external control and manipulation of band topology, enriching the functional aspects of topological materials and furthering the possibility of practical applications for topological electronics.
The $4d$ and $5d$ transition metal oxides have become important members of the emerging quantum materials family due to competition between onsite Coulomb repulsion ($U$) and spin-orbit coupling (SOC). Specifically, the systems with $d^5$ electronic
We study the quantum critical phenomena emerging at the transition from triple-Weyl semimetal to band insulator, which is a topological phase transition described by the change of topological invariant. The critical point realizes a new type of semim
We study a layered three-dimensional heterostructure in which two types of Kondo insulators are stacked alternatingly. One of them is the topological Kondo insulator SmB 6 , the other one an isostructural Kondo insulator AB 6 , where A is a rare-eart
Unconventional surface states protected by non-trivial bulk orders are sources of various exotic quantum transport in topological materials. One prominent example is the unique magnetic orbit, so-called Weyl orbit, in topological semimetals where two
A topological insulator doped with random magnetic impurities is studied. The system is modelled by the Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The dynamical mean field theory for disordered syst