ﻻ يوجد ملخص باللغة العربية
The Ericksen model for nematic liquid crystals couples a director field with a scalar degree of orientation variable, and allows the formation of various defects with finite energy. We propose a simple but novel finite element approximation of the problem that can be implemented easily within standard finite element packages. Our scheme is projection-free and thus circumvents the use of weakly acute meshes, which are quite restrictive in 3D but are required by recent algorithms for convergence. We prove stability and $Gamma$-convergence properties of the new method in the presence of defects. We also design an effective nested gradient flow algorithm for computing minimizers that controls the violation of the unit-length constraint of the director. We present several simulations in 2D and 3D that document the performance of the proposed scheme and its ability to capture quite intriguing defects.
In this paper we discuss a hybridised method for FEM-BEM coupling. The coupling from both sides use a Nitsche type approach to couple to the trace variable. This leads to a formulation that is robust and flexible with respect to approximation spaces
In this paper, we study the Cauchy problem of the Poiseuille flow of full Ericksen-Leslie model for nematic liquid crystals. The model is a coupled system of a parabolic equation for the velocity and a quasilinear wave equation for the director. For
We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The
We consider the null controllability problem for the wave equation, and analyse a stabilized finite element method formulated on a global, unstructured spacetime mesh. We prove error estimates for the approximate control given by the computational me
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur