ﻻ يوجد ملخص باللغة العربية
In recent years, it has been understood that color-ordered scattering amplitudes can be encoded as logarithmic differential forms on positive geometries. In particular, amplitudes in maximally supersymmetric Yang-Mills theory in spinor helicity space are governed by the momentum amplituhedron. Due to the group-theoretic structure underlying color decompositions, color-ordered amplitudes enjoy various identities which relate different orderings. In this paper, we show how the Kleiss-Kuijf relations arise from the geometry of the momentum amplituhedron. We also show how similar relations can be realised for the kinematic associahedron, which is the positive geometry of bi-adjoint scalar cubic theory.
In this paper we define a new object, the momentum amplituhedron, which is the long sought-after positive geometry for tree-level scattering amplitudes in $mathcal{N}=4$ super Yang-Mills theory in spinor helicity space. Inspired by the construction o
In this paper we study a relation between two positive geometries: the momentum amplituhedron, relevant for tree-level scattering amplitudes in $mathcal{N} = 4$ super Yang-Mills theory, and the kinematic associahedron, encoding tree-level amplitudes
The momentum amplituhedron is a positive geometry encoding tree-level scattering amplitudes in $mathcal{N}=4$ super Yang-Mills directly in spinor-helicity space. In this paper we classify all boundaries of the momentum amplituhedron $mathcal{M}_{n,k}
We initiate the systematic study of emph{local positive spaces} which arise in the context of the Amplituhedron construction for scattering amplitudes in planar maximally supersymmetric Yang-Mills theory. We show that all local positive spaces releva
In this paper we provide a formula for the canonical differential form of the hypersimplex $Delta_{k,n}$ for all $n$ and $k$. We also study the generalization of the momentum amplituhedron $mathcal{M}_{n,k}$ to $m=2$, and we conclude that the existin