ﻻ يوجد ملخص باللغة العربية
We report a theoretical study on the long-range additive and nonadditive potentials for a three-body hybrid atom-atom-ion system composed of one ground $S$ state Li atom, one excited $P$ state Li atom and one ground $S$ state Li$^+$ ion, Li($2,^{2}S$)-Li($2,^{2}P$)-Li$^+(1,^{1}S$). The interaction coefficients are evaluated with highly accurate wave functions calculated variationally in Hylleraas coordinates. For this hybrid system the three-body nonadditive collective interactions (appearing in second-order) induced by the energy degeneracy and enhanced by the induction effect of the Li$^+$ ion through the internal electric field can be strong and even stronger than the two-body additive interactions at the same order. We find that for particular geometries the two-body additive interactions of the system sum to zero leaving only three-body nonadditive collective interactions making the present system potentially a platform to explore quantum three-body collective effects. We also extract first-principles leading coefficients of the long-range electrostatic, induction, and dispersion energies of Li$^+_2$ electronic states correlating to Li($2,^{2}P$)-Li$^+(1,^{1}S$), which until now were not available in the literature. The results should be especially valuable for the exploration of schemes to create trimers with ultracold atoms and ions in optical lattices.
We propose a novel type of Rydberg dimer, consisting of a Rydberg-state atom bound to a distant positive ion. The molecule is formed through long-range electric-multipole interaction between the Rydberg atom and the point-like ion. We present potenti
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties li
We report the realization of a heteronuclear two-atom of $^{87}$Rb-$^{85}$Rb in the ground state of an optical tweezer (OT). Starting by trapping two different isotopic single atoms, a $^{87}$Rb and a $^{85}$Rb in two strongly focused and linearly po
I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by the authors of Refs.[1-3], and for which precedent approaches have given conflicting results. In the first place, I discuss
It is established within the Thomas -- Fermi model that a bound state of a proton with a heavy atom should exist. On the one hand, the electrons of the atom screen the protons field. This decreases the repulsion force between the proton and the nucle