ﻻ يوجد ملخص باللغة العربية
For most of the anchor-based detectors, Intersection over Union(IoU) is widely utilized to assign targets for the anchors during training. However, IoU pays insufficient attention to the closeness of the anchors center to the truth boxs center. This results in two problems: (1) only one anchor is assigned to most of the slender objects which leads to insufficient supervision information for the slender objects during training and the performance on the slender objects is hurt; (2) IoU can not accurately represent the alignment degree between the receptive field of the feature at the anchors center and the object. Thus during training, some features whose receptive field aligns better with objects are missing while some features whose receptive field aligns worse with objects are adopted. This hurts the localization accuracy of models. To solve these problems, we firstly design Gaussian Guided IoU(GGIoU) which focuses more attention on the closeness of the anchors center to the truth boxs center. Then we propose GGIoU-balanced learning method including GGIoU-guided assignment strategy and GGIoU-balanced localization loss. The method can assign multiple anchors for each slender object and bias the training process to the features well-aligned with objects. Extensive experiments on the popular benchmarks such as PASCAL VOC and MS COCO demonstrate GGIoU-balanced learning can solve the above problems and substantially improve the performance of the object detection model, especially in the localization accuracy.
General-purpose object-detection algorithms often dismiss the fine structure of detected objects. This can be traced back to how their proposed regions are evaluated. Our goal is to renegotiate the trade-off between the generality of these algorithms
As one of the most fundamental and challenging problems in computer vision, object detection tries to locate object instances and find their categories in natural images. The most important step in the evaluation of object detection algorithm is calc
Compared with model architectures, the training process, which is also crucial to the success of detectors, has received relatively less attention in object detection. In this work, we carefully revisit the standard training practice of detectors, an
In this paper, we present an Intersection-over-Union (IoU) guided two-stage 3D object detector with a voxel-to-point decoder. To preserve the necessary information from all raw points and maintain the high box recall in voxel based Region Proposal Ne
3D object detection is an important yet demanding task that heavily relies on difficult to obtain 3D annotations. To reduce the required amount of supervision, we propose 3DIoUMatch, a novel semi-supervised method for 3D object detection applicable t