ﻻ يوجد ملخص باللغة العربية
Towards better unsupervised domain adaptation (UDA). Recently, researchers propose various domain-conditioned attention modules and make promising progresses. However, considering that the configuration of attention, i.e., the type and the position of attention module, affects the performance significantly, it is more generalized to optimize the attention configuration automatically to be specialized for arbitrary UDA scenario. For the first time, this paper proposes EvoADA: a novel framework to evolve the attention configuration for a given UDA task without human intervention. In particular, we propose a novel search space containing diverse attention configurations. Then, to evaluate the attention configurations and make search procedure UDA-oriented (transferability + discrimination), we apply a simple and effective evaluation strategy: 1) training the network weights on two domains with off-the-shelf domain adaptation methods; 2) evolving the attention configurations under the guide of the discriminative ability on the target domain. Experiments on various kinds of cross-domain benchmarks, i.e., Office-31, Office-Home, CUB-Paintings, and Duke-Market-1510, reveal that the proposed EvoADA consistently boosts multiple state-of-the-art domain adaptation approaches, and the optimal attention configurations help them achieve better performance.
Big progress has been achieved in domain adaptation in decades. Existing works are always based on an ideal assumption that testing target domain are i.i.d. with training target domains. However, due to unpredictable corruptions (e.g., noise and blur
Unsupervised domain adaptation is critical in various computer vision tasks, such as object detection, instance segmentation, and semantic segmentation, which aims to alleviate performance degradation caused by domain-shift. Most of previous methods
Unsupervised Domain Adaptation (UDA) can transfer knowledge from labeled source data to unlabeled target data of the same categories. However, UDA for first-person action recognition is an under-explored problem, with lack of datasets and limited con
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions. Existing DA normally assumes the well-labeled source domain is class-wise balanced, which
Recent advances in unsupervised domain adaptation mainly focus on learning shared representations by global distribution alignment without considering class information across domains. The neglect of class information, however, may lead to partial al