ﻻ يوجد ملخص باللغة العربية
This paper considers a time-varying optimization problem associated with a network of systems, with each of the systems shared by (and affecting) a number of individuals. The objective is to minimize cost functions associated with the individuals preferences, which are unknown, subject to time-varying constraints that capture physical or operational limits of the network. To this end, the paper develops a distributed online optimization algorithm with concurrent learning of the cost functions. The cost functions are learned on-the-fly based on the users feedback (provided at irregular intervals) by leveraging tools from shape-constrained Gaussian Processes. The online algorithm is based on a primal-dual method, and acts effectively in a closed-loop fashion where: i) users feedback is utilized to estimate the cost, and ii) measurements from the network are utilized in the algorithmic steps to bypass the need for sensing of (unknown) exogenous inputs of the network. The performance of the algorithm is analyzed in terms of dynamic network regret and constraint violation. Numerical examples are presented in the context of real-time optimization of distributed energy resources.
We consider optimization problems for (networked) systems, where we minimize a cost that includes a known time-varying function associated with the systems outputs and an unknown function of the inputs. We focus on a data-based online projected gradi
We present a method to over-approximate reachable tubes over compact time-intervals, for linear continuous-time, time-varying control systems whose initial states and inputs are subject to compact convex uncertainty. The method uses numerical approxi
A major limitation of online algorithms that track the optimizers of time-varying nonconvex optimization problems is that they focus on a specific local minimum trajectory, which may lead to poor spurious local solutions. In this paper, we show that
There is an increasing interest in designing differentiators, which converge exactly before a prespecified time regardless of the initial conditions, i.e., which are fixed-time convergent with a predefined Upper Bound of their Settling Time (UBST), d
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for th