ﻻ يوجد ملخص باللغة العربية
Searches for new leptophobic resonances at high energy colliders usually target their decay modes into pairs of light quarks, top quarks, or standard model bosons. Additional decay modes may also be present, producing signatures to which current searches are not sensitive. We investigate the performance of generic searches that look for resonances decaying into two large-radius jets. As benchmark for our analysis we use a supersymmetric $text{U}(1)$ extension of the Standard Model, the so-called U$mu u$SSM, where all the SM decay modes of the $Z$ boson take place, plus additional (cascade) decays into new scalars. The generic searches use a generic multi-pronged jet tagger and take advantage of the presence of $b$ quarks in the large-radius jets, and are sensitive to all these $Z$ decay modes (except into light quarks) at once. For couplings that are well below current experimental constraints, these generic searches are sensitive at the $3sigma-4sigma$ level with Run 2 LHC data.
So far the most sophisticated experiments have shown no trace of new physics at the TeV scale. Consequently, new models with unexplored parameter regions are necessary to explain current results, re-examine the existing data, and propose new experime
New $U(1)$ gauge theories involving Standard Model (SM) fermions typically require additional electroweak fermions for anomaly cancellation. We study the non-decoupling properties of these new fermions, called anomalons, in the $Z-Z-gamma$ vertex fun
U-spin symmetry predicts equal CP rate asymmetries with opposite signs in pairs of $Delta S=0$ and $Delta S=1$ $B$ meson decays in which initial and final states are related by U-spin reflection. Of particular interest are six decay modes to final st
The spectroscopic parameters and decay channels of the scalar tetraquark $ T_{bb;overline{u}overline{s}}^{-}$ (in what follows $T_{b:overline{s} }^{-} $) are investigated. The mass and coupling of the $T_{b:s}^{-}$ are calculated using the two-point
We evaluate long-distance electromagnetic (QED) contributions to $bar{B}{}^0 to D^+ tau^{-} bar{ u}_{tau}$ and $B^- to D^0 tau^{-} bar{ u}_{tau}$ relative to $bar{B}{}^0 to D^+ mu^{-} bar{ u}_{mu}$ and $B^- to D^0 mu^{-} bar{ u}_{mu}$, respectively,