ﻻ يوجد ملخص باللغة العربية
The W-CDF-S and ELAIS-S1 fields will be two of the LSST Deep Drilling fields, but the availability of spectroscopic redshifts within these two fields is still limited on deg^2 scales. To prepare for future science, we use EAZY to estimate photometric redshifts (photo-zs) in these two fields based on forced-photometry catalogs. Our photo-z catalog consists of ~0.8 million sources covering 4.9 deg^2 in W-CDF-S and ~0.8 million sources covering 3.4 deg^2 in ELAIS-S1, among which there are ~0.6 (W-CDF-S) and ~0.4 (ELAIS-S1) million sources having signal-to-noise-ratio (SNR) > 5 detections in more than 5 bands. By comparing photo-zs and available spectroscopic redshifts, we demonstrate the general reliability of our photo-z measurements. Our photo-z catalog is publicly available at doi{10.5281/zenodo.4603178}.
We present the X-ray point-source catalogs in two of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields, W-CDF-S (4.6 deg$^2$) and ELAIS-S1 (3.2 deg$^2$), aiming to fill the gap between deep pencil-beam X-ray surveys and sh
The ELAIS-S1 field will be an LSST Deep Drilling field, and it also has extensive multiwavelength coverage. To improve the utility of the existing data, we use The Tractor to perform forced-photometry measurements in this field. We compile data in 16
The first phase of the ATLAS (Australia Telescope Large Area Survey) project surveyed a total 7 square degrees down to 30 micro Jy rms at 1.4 GHz and is the largest sensitive radio survey ever attempted. We report on the scientific achievements of AT
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ~900 square arcminutes in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available
We present an optical to near-infrared selected astronomical catalogue covering 1270 deg.$^2$. This is the first attempt to systematically combine data from 23 of the premier extragalactic survey fields - the product of a vast investment of telescope