ﻻ يوجد ملخص باللغة العربية
The efficiency of the transport of angular momentum and chemical elements inside intermediate-mass stars lacks proper calibration, thereby introducing uncertainties on a stars evolutionary pathway. Improvements require better estimation of stellar masses, evolutionary stages, and internal mixing properties. We aim to develop a neural network approach for asteroseismic modelling and test its capacity to provide stellar masses, ages, and overshooting parameter for a sample of 37 $gamma$ Doradus stars. Here, our goal is to perform the parameter estimation from modelling of individual periods measured for dipole modes with consecutive radial order. We have trained neural networks to predict theoretical pulsation periods of high-order gravity modes as well as the luminosity, effective temperature, and surface gravity for a given mass, age, overshooting parameter, diffusive envelope mixing, metallicity, and near-core rotation frequency. We have applied our neural networks for Computing Pulsation Periods and Photospheric Observables, C-3PO, to our sample and compute grids of stellar pulsation models for the estimated parameters. We present the near-core rotation rates (from literature) as a function of the inferred stellar age and critical rotation rate. We assess the rotation rates of the sample near the start of the main sequence assuming rigid rotation. Furthermore, we measure the extent of the core overshoot region and find no correlation with mass, age, or rotation. The neural network approach developed in this study allows for the derivation of stellar properties dominant for stellar evolution -- such as mass, age, and extent of core-boundary mixing. It also opens a path for future estimation of mixing profiles throughout the radiative envelope, with the aim to infer those profiles for large samples of $gamma$ Doradus stars.
We present a spectroscopic survey of known and candidate $gamma$,Doradus stars. The high-resolution, high signal-to-noise spectra of 52 objects were collected by five different spectrographs. The spectral classification, atmospheric parameters (teff,
Gamma Doradus are F-type stars pulsating with high order g-modes. Their instability strip (IS) overlaps the red edge of the delta Scuti one. This observation has led to search for objects in this region of the HR diagram showing p and g-modes simulta
We present what constraints on opacities can be derived from the analysis of stellar pulsations of BA-type main-sequence stars. This analysis consists of the construction of complex seismic models which reproduce the observed frequencies as well as t
Observations from the Kepler satellite were recently published for three bright G-type stars, which were monitored during the first 33.5d of science operations. One of these stars, KIC 11026764, exhibits a characteristic pattern of oscillation freque
The hot $gamma$~Doradus stars have multiple low frequencies characteristic of $gamma$~Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the $gamma$~Dor instability strips where all low-frequency modes are stab