FakeMix Augmentation Improves Transparent Object Detection


الملخص بالإنكليزية

Detecting transparent objects in natural scenes is challenging due to the low contrast in texture, brightness and colors. Recent deep-learning-based works reveal that it is effective to leverage boundaries for transparent object detection (TOD). However, these methods usually encounter boundary-related imbalance problem, leading to limited generation capability. Detailly, a kind of boundaries in the background, which share the same characteristics with boundaries of transparent objects but have much smaller amounts, usually hurt the performance. To conquer the boundary-related imbalance problem, we propose a novel content-dependent data augmentation method termed FakeMix. Considering collecting these trouble-maker boundaries in the background is hard without corresponding annotations, we elaborately generate them by appending the boundaries of transparent objects from other samples into the current image during training, which adjusts the data space and improves the generalization of the models. Further, we present AdaptiveASPP, an enhanced version of ASPP, that can capture multi-scale and cross-modality features dynamically. Extensive experiments demonstrate that our methods clearly outperform the state-of-the-art methods. We also show that our approach can also transfer well on related tasks, in which the model meets similar troubles, such as mirror detection, glass detection, and camouflaged object detection. Code will be made publicly available.

تحميل البحث