ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping the Galactic centres dark cluster via Resonant Relaxation

50   0   0.0 ( 0 )
 نشر من قبل Kerwann Tep
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supermassive black holes in the centre of galaxies dominate the gravitational potential of their surrounding stellar clusters. In these dense environments, stars follow nearly Keplerian orbits, which get slowly distorted as a result of the potential fluctuations generated by the stellar cluster itself as a whole. In particular, stars undergo a rapid relaxation of their eccentricities through both resonant and non-resonant processes. An efficient implementation of the resonant diffusion coefficients allows for detailed and systematic explorations of the parameter space describing the properties of the stellar cluster. In conjunction with recent observations of the S-cluster orbiting SgrA*, this framework can be used to jointly constrain the distribution of the unresolved, old, background stellar cluster and the characteristics of a putative dark cluster. Specifically, we show how this can be used to estimate the typical mass and cuspide exponent of intermediate-mass black holes consistent with the relaxed state of the distribution of eccentricities in the observed S-cluster. This should prove useful in constraining super massive black hole formation scenarios.



قيم البحث

اقرأ أيضاً

183 - David Merritt 2015
Direct numerical integrations of the Fokker-Planck equation in energy-angular momentum space are carried out for stars orbiting a supermassive black hole (SBH) at the center of a galaxy. The algorithm, which was described in detail in an earlier pape r, includes diffusion coefficients that describe the effects of both random (classical) and correlated (resonant) encounters. Steady-state solutions are similar to the Bahcall-Wolf solution but are modified at small radii due to the higher rate of diffusion in angular momentum, which results in a low-density core. The core radius is a few percent of the influence radius of the SBH. The corresponding phase-space density f(E,L) drops nearly to zero at low energies, implying almost no stars on tightly-bound orbits about the SBH. Steady-state rates of stellar disruption are presented, and a simple analytic expression is found that reproduces the numerical feeding rates with good accuracy. The distribution of periapsides of disrupted stars is also computed. Time-dependent solutions are also computed, starting from initial conditions similar to those produced by a binary SBH. In these models, feeding rates evolve on two timescales: rapid evolution during which the region evacuated by the massive binary is refilled by angular-momentum diffusion; and slower evolution as diffusion in energy causes the density profile at large radii to attain the Bahcall-Wolf form.
Globular clusters contain a finite number of stars. As a result, they inevitably undergo secular evolution (`relaxation) causing their mean distribution function (DF) to evolve on long timescales. On one hand, this long-term evolution may be interpre ted as driven by the accumulation of local deflections along each stars mean field trajectory -- so-called `non-resonant relaxation. On the other hand, it can be thought of as driven by non-local, collectively dressed and resonant couplings between stellar orbits, a process termed `resonant relaxation. In this paper we consider a model globular cluster represented by a spherical, isotropic isochrone DF, and compare in detail the predictions of both resonant and non-resonant relaxation theories against tailored direct $N$-body simulations. In the space of orbital actions (namely the radial action and total angular momentum), we find that both resonant and non-resonant theories predict the correct morphology for the secular evolution of the clusters DF, although non-resonant theory over-estimates the amplitude of the relaxation rate by a factor ${sim 2}$. We conclude that the secular relaxation of hot isotropic spherical clusters is not dominated by collectively amplified large-scale potential fluctuations, despite the existence of a strong ${ell = 1}$ damped mode. Instead, collective amplification affects relaxation only marginally even on the largest scales. The predicted contributions to relaxation from smaller scale fluctuations are essentially the same from resonant and non-resonant theories.
We use the Milky Ways nuclear star cluster (NSC) to test the existence of a dark matter soliton core, as predicted in ultra-light dark matter (ULDM) models. Since the soliton core size is proportional to mDM^{-1}, while the core density grows as mDM^ {2}, the NSC (dominant stellar component within about 3 pc) is sensitive to a specific window in the dark matter particle mass, mDM. We apply a spherical isotropic Jeans model to fit the NSC line-of-sight velocity dispersion data, assuming priors on the Milky Ways supermassive black hole (SMBH) mass taken from the Gravity Collaboration et al. (2020) and stellar density profile taken from Gallego-Cano et al. (2018). We find that the current observational data reject the existence of a soliton core for a single ULDM particle with mass in the range 10^{-20.0} < mDM < 10^{-18.5} eV, assuming that the soliton core structure is not affected by the Milky Ways SMBH. We test our methodology on mock data, confirming that we are sensitive to the same range in ULDM mass as for the real data. Dynamical modelling of a larger region of the Galactic centre, including the nuclear stellar disc, promises tighter constraints over a broader range of mDM. We will consider this in future work.
We investigate the rate of orbital orientation dilution of young stellar clusters in the vicinity of supermassive black holes. Within the framework of vector resonant relaxation, we predict the time evolution of the two-point correlation function of the stellar orbital plane orientations as a function of their initial angular separation and diversity in orbital parameters (semi-major axis, eccentricity). As expected, the larger the spread in initial orientations and orbital parameters, the more efficient the dilution of a given set of co-eval stars, with a characteristic timescale set up by the coherence time of the background potential fluctuations. A Markovian prescription which matches numerical simulations allows us to efficiently probe the underlying kinematic properties of the unresolved nucleus when requesting consistency with a given dilution efficiency, imposed by the observed stellar disc within the one arcsecond of Sgr A*. As a proof of concept, we compute maps of constant dilution times as a function of the semi major axis cusp index and fraction of intermediate mass black holes in the old background stellar cluster. This computation suggests that vector resonant relaxation should prove useful in this context since it impacts orientations on timescales comparable to the stars age.
We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed g iants with accurate distance, radial velocity and metallicity information. We have developed a new clustering estimator: the 4distance measure, which when applied to our data set leads to the identification of 1 group and 7 pairs of clumped stars. The group, with 6 members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. (2007) using SDSS data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا