ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesoporous bioactive glass/e-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep

123   0   0.0 ( 0 )
 نشر من قبل Mar\\'ia Vallet-Regi
 تاريخ النشر 2021
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and epolycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2) and osteoclasts derived from RAW 264.7 macrophages. In vivo studies were carried out by implantation into cavitary defects drilled in osteoporotic sheep. The scaffolds evidenced excellent bone regeneration properties, promoting new bone formation at both the peripheral and the inner parts of the scaffolds, thick trabeculae, high vascularization and high presence of osteoblasts and osteoclasts. In order to evaluate the effects of the local release of an antiosteoporotic drug, 1% (%wt) of zoledronic acid was incorporated to the scaffolds. The scaffolds loaded with zoledronic acid induced apoptosis in Saos 2 cells, impeded osteoclast differentiation in a time dependent manner and inhibited bone healing, promoting an intense inflammatory response in osteoporotic sheep.



قيم البحث

اقرأ أيضاً

Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture tests. Those scaffolds made of nanocrystalline SiHA were colonized by fibrous tissue, promoted inflammatory response and fostered osteoclast recruitment. These observations discard nanocystalline SiHA as a suitable material for bone regeneration purposes. On the contrary, those scaffolds made of crystalline SiHA and decorated with VEGF exhibited bone regeneration properties, with high ossification degree, thicker trabeculae and higher presence of osteoblasts and blood vessels. Considering these results, macroporous scaffolds made of SiHA and decorated with VEGF are suitable bone grafts for regeneration purposes, even in adverse pathological scenarios such as osteoporosis.
Bone regeneration is a clinical challenge that requires multiple approaches. Sometimes, it also includes the development of new osteogenic and antibacterial biomaterials to treat the occurrence of possible infection processes derived from surgery. Th is study evaluates the antibacterial properties of meso-macroporous scaffolds coated with gelatin and based on a bioactive glass and after being doped with 4% ZnO (4ZN-GE) and loaded with saturated and minimally inhibitory concentrations of one of the antibiotics levofloxacin (LEVO), vancomycin (VANCO), rifampicin (RIFAM) or gentamicin (GENTA). After the physicochemical characterization of the materials, inorganic ion and antibiotic release studies were performed from the scaffolds. In addition, molecular modeling allowed the determination of electrostatic potential density maps and hydrogen bonds of the antibiotics and the glass matrix. In vitro antibacterial studies (in plankton, inhibition halos and biofilm destruction) with S. aureus and E. coli as model bacteria showed a synergistic effect of zinc ions and antibiotics. The effect was especially noticeable in planktonic cultures of S. aureus with 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and in cultures of E. coli with LEVO or GENTA. Furthermore, S. aureus biofilms were completely destroyed by 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and total destruction of E. coli biofilm was achieved with 4ZN-GE scaffolds loaded with GENTA or LEVO. This approach could be an important step in the fight against microbial resistance and provide much needed options for the treatment of bone infection.
There is an urgent need of biosynthetic bone grafts with enhanced osteogenic capacity. In this study, we describe the design of hierarchical meso-macroporous 3D-scaffolds based on mesoporous bioactive glasses (MBGs), enriched with the peptide osteost atin and Zn2+ ions, and their osteogenic effect on human mesenchymal stem cells (hMSCs) as a preclinical strategy in bone regeneration. By using additive fabrication techniques, scaffolds exhibiting hierarchical porosity: mesopores , macropores and big channels, were prepared. These MBG scaffolds with or without osteostatin were evaluated in cell cultures of hMSCs. Zinc promoted hMSCs colonization (both the surface and inside) of MBG scaffolds. Moreover, Zn2+ ions and osteostatin together, but not independently, in the scaffolds were found to induce the osteoblast differentiation genes runt related transcription factor-2 (RUNX2) and alkaline phosphatase (ALP) in hMSCs after 7 d of culture in the absence of an osteogenic differentiation-promoting medium. These results add credence to the combined use of zinc and osteostatin as an effective strategy for bone regeneration applications.
A very small number of biomaterials investigated for bone regeneration was reported as able to prevent the oxidative stress. In this study beads based on alginate hydrogel and mesoporous glasses (MG) containing different amounts of cerium oxides (Ce3 +/Ce4+) exhibiting antioxidant properties were investigated as a good approach to mimic the action of antioxidant enzymes in our organism. The effect of cerium contents on the bioactivity and biocompatibility of beads were investigated. Moreover, the potential capability of Ce-containing MG to prevent the oxidative stress caused by the activity of reactive oxygen species (ROS) was here investigated for the first time. The increment of cerium oxide from 1.2, to 3.6 and 5.3 mol-% decreases the surface area and porosity of MG and increases the catalase mimetic activity after 168 h. Swelling tests in different cell culture media (D- and {alpha}-MEM) demonstrated the rehydration capability of beads. The presence of beads with the highest Ce-contents (3.6 and 5.3 %) improved the proliferation of pre-osteoblastic cells MC3T3-C1 cells. However, the cell differentiation decreased when increased the cerium content. Lactate dehydrogenase assays showed beads are cytocompatible materials. Moreover, oxidative stress tests with H2O2 showed a better response related to cell viability and the elimination of oxidant species when increased cerium content. Beads of glasses with 1.2 and 3.6 % of CeO2 are excellent candidates as bioactive scaffolds for bone regeneration capable of counteract the oxidative stress.
Cell-free translational strategies are needed to accelerate the repair of mineralised tissues, particularly large bone defects, using minimally invasive approaches. Regenerative bone scaffolds should ideally mimic aspects of the tissues ECM over mult iple length scales and enable surgical handling and fixation during implantation in vivo. Leveraging the knowledge gained with bioactive self-assembling peptides (SAPs) and SAP-enriched electrospun fibres, we presented a cell free approach for promoting mineralisation via apatite deposition and crystal growth, in vitro, of SAP-enriched nonwoven scaffolds. The nonwoven scaffold was made by electrospinning poly(epsilon-caprolactone) (PCL) in the presence of either peptide P11-4 (Ac-QQRFEWEFEQQ-Am) or P11-8 (Ac-QQRFOWOFEQQ-Am), in light of the polymers fibre forming capability and its hydrolytic degradability as well as the well-known apatite nucleating capability of SAPs. The 11-residue family of peptides (P11-X) has the ability to self-assemble into beta-sheet ordered structures at the nano-scale and to generate hydrogels at the macroscopic scale, some of which are capable of promoting biomineralisation due to their apatite-nucleating capability. Both variants of SAP-enriched nonwoven used in this study were proven to be biocompatible with murine fibroblasts and supported nucleation and growth of apatite minerals in simulated body fluid (SBF) in vitro. The fibrous nonwoven provided a structurally robust scaffold, with the capability to control SAP release behaviour. Up to 75% of P11-4 and 45% of P11-8 were retained in the fibres after 7-day incubation in aqueous solution at pH 7.4. The encapsulation of SAP in a nonwoven system with apatite-forming as well as localised and long-term SAP delivery capabilities is appealing as a potential means of achieving cost-effective bone repair therapy for critical size defects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا