ﻻ يوجد ملخص باللغة العربية
We study the Cauchy problem for the quasi-geostrophic equations with the critical dissipation in the two dimensional half space under the homogeneous Dirichlet boundary condition. We show the global existence, the uniqueness and the analyticity of solutions, and the real analyticity up to the boundary is obtained. We will show one of natural ways to estimate the nonlinear term for functions satisfying the Dirichlet boundary condition.
We establish a regularity criterion for weak solutions of the dissipative quasi-geostrophic equations in mixed time-space Besov spaces.
The semi-geostrophic system is widely used in the modelling of large-scale atmospheric flows. In this paper, we prove existence of solutions of the incompressible semi-geostrophic equations in a fully three-dimensional domain with a free upper bounda
In this paper, we investigate pointwise time analyticity of solutions to fractional heat equations in the settings of $mathbb{R}^d$ and a complete Riemannian manifold $mathrm{M}$. On one hand, in $mathbb{R}^d$, we prove that any solution $u=u(t,x)$ t
We are concerned with the existence of periodic travelling-wave solutions for the generalized surface quasi-geostrophic (gSQG) equation(including incompressible Euler equation), known as von Karman vortex street. These solutions are of $C^1$ type, an
Consider the surface quasi-geostrophic equation with random diffusion, white in time. We show global existence and uniqueness in high probability for the associated Cauchy problem satisfying a Gevrey type bound. This article is inspired by recent work of Glatt-Holtz and Vicol.