ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Period-Ratio-Mass-Ratio Correlation of Extra-Solar Multi-Planet Systems

57   0   0.0 ( 0 )
 نشر من قبل Ing-Guey Jiang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to gain possible hints for planet formation from the current data of known extra-solar planets, the period-ratios and mass-ratios of adjacent planet pairs in multi-planet systems are determined. A moderate period-ratio-mass-ratio correlation is found to have a correlation coefficient r=0.5779 with 99% confidence interval (0.464, 0.672). In contrast, for non-adjacent planet pairs, the correlation coefficient is r=0.2820 with 99% confidence interval (0.133, 0.419). Our results reveal the imprint of planet-planet interactions of the adjacent planet pairs in a certain fraction of the multi-planet systems during the stage of planet formation.



قيم البحث

اقرأ أيضاً

Employing the data from orbital periods and masses of extra-solar planets in 166 multiple planetary systems, the period-ratio and mass-ratio of adjacent planet pairs are studied. The correlation between the period-ratio and mass-ratio is confirmed an d found to have a correlation coefficient of 0.5303 with a 99% confidence interval (0.3807, 0.6528). A comparison with the distribution of synthetic samples from a Monte Carlo simulation reveals the imprint of planet-planet interactions on the formation of adjacent planet pairs in multiple planetary systems.
We investigate whether certain extra-solar multi-planet systems simultaneously follow the scaling and spacing rules of the angular-momentum-deficit model. The masses and semi-major axes of exoplanets in ten multi-planet systems are considered. It is found that GJ 667C, HD 215152, HD 40307, and Kepler-79 systems are currently close to configurations of the angular-momentum-deficit model. In a gas-poor scenario, GJ 3293, HD 141399, and HD 34445 systems are those which had a configuration of the angular-momentum-deficit model in the past and get scattered away due to post gaseous effects. In addition, no matter in gas-free or gas-poor scenario, 55 Cnc, GJ 876, and WASP-47 systems do not follow the angular-momentum-deficit model. Therefore, our results reveal important formation histories of these multi-planet systems.
We calculate and analyze the distribution of period ratios observed in systems of Kepler exoplanet candidates including studies of both adjacent planet pairs and all planet pairs. These distributions account for both the geometrical bias against dete cting more distant planets and the effects of incompleteness due to planets missed by the data reduction pipeline. In addition to some of the known features near first-order mean-motion resonances (MMR), there is a significant excess of planet pairs with period ratios near 2.2. The statistical significance of this feature is assessed using Monte Carlo simulation. We also investigate the distribution of period ratios near first-order MMR and compare different quantities used to measure this distribution. We find that beyond period ratios of ~2.5, the distribution of all period ratios follows a power-law with an exponent -1.26 +/- 0.05. We discuss implications that these results may have on the formation and dynamical evolution of Kepler-like planetary systems---systems of sub-Neptune/super-Earth planets with relatively short orbital periods.
We report the discovery of a cold Super-Earth planet (m_p=4.4 +/- 0.5 M_Earth) orbiting a low-mass (M=0.23 +/- 0.03 M_Sun) M dwarf at projected separation a_perp = 1.18 +/- 0.10 AU, i.e., about 1.9 times the snow line. The system is quite nearby for a microlensing planet, D_Lens = 0.86 +/- 0.09 kpc. Indeed, it was the large lens-source relative parallax pi_rel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, microlens parallax that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q < 1 * 10^-4. We apply a new planet-detection sensitivity method, which is a variant of V/V_max, to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d(ln q) ~ q^p, with p = 1.05 (+0.78,-0.68), which confirms the turnover in the mass function found by Suzuki et al. relative to the power law of opposite sign n = -0.93 +/- 0.13 at higher mass ratios q >~ 2 * 10^-4. We combine our result with that of Suzuki et al. to obtain p = 0.73 (+0.42,-0.34).
102 - S. Udry , X. Dumusque , C. Lovis 2017
We present radial-velocity measurement of eight stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). Data span more than ten years and highlight the long-term stability of the instrument. We sear ch for potential planets orbiting HD20003, HD20781, HD21693, HD31527, HD45184, HD51608, HD134060 and HD136352 to increase the number of known planetary systems and thus better constrain exoplanet statistics. After a preliminary phase looking for signals using generalized Lomb-Scargle periodograms, we perform a careful analysis of all signals to separate emph{bona-fide} planets from spurious signals induced by stellar activity and instrumental systematics. We finally secure the detection of all planets using the efficient MCMC available on the Data and Analysis Center for Exoplanets (DACE web-platform), using model comparison whenever necessary. In total, we report the detection of twenty new super-Earth to Neptune-mass planets, with minimum masses ranging from 2 to 30 M$_{rm Earth}$, and periods ranging from 3 to 1300 days. By including CORALIE and HARPS measurements of HD20782 to the already published data, we also improve the characterization of the extremely eccentric Jupiter orbiting this host.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا