ترغب بنشر مسار تعليمي؟ اضغط هنا

Supporting Clustering with Contrastive Learning

86   0   0.0 ( 0 )
 نشر من قبل Dejiao Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised clustering aims at discovering the semantic categories of data according to some distance measured in the representation space. However, different categories often overlap with each other in the representation space at the beginning of the learning process, which poses a significant challenge for distance-based clustering in achieving good separation between different categories. To this end, we propose Supporting Clustering with Contrastive Learning (SCCL) -- a novel framework to leverage contrastive learning to promote better separation. We assess the performance of SCCL on short text clustering and show that SCCL significantly advances the state-of-the-art results on most benchmark datasets with 3%-11% improvement on Accuracy and 4%-15% improvement on Normalized Mutual Information. Furthermore, our quantitative analysis demonstrates the effectiveness of SCCL in leveraging the strengths of both bottom-up instance discrimination and top-down clustering to achieve better intra-cluster and inter-cluster distances when evaluated with the ground truth cluster labels.



قيم البحث

اقرأ أيضاً

102 - Jie Xu , Huayi Tang , Yazhou Ren 2021
Multi-modal clustering, which explores complementary information from multiple modalities or views, has attracted peoples increasing attentions. However, existing works rarely focus on extracting high-level semantic information of multiple modalities for clustering. In this paper, we propose Contrastive Multi-Modal Clustering (CMMC) which can mine high-level semantic information via contrastive learning. Concretely, our framework consists of three parts. (1) Multiple autoencoders are optimized to maintain each modalitys diversity to learn complementary information. (2) A feature contrastive module is proposed to learn common high-level semantic features from different modalities. (3) A label contrastive module aims to learn consistent cluster assignments for all modalities. By the proposed multi-modal contrastive learning, the mutual information of high-level features is maximized, while the diversity of the low-level latent features is maintained. In addition, to utilize the learned high-level semantic features, we further generate pseudo labels by solving a maximum matching problem to fine-tune the cluster assignments. Extensive experiments demonstrate that CMMC has good scalability and outperforms state-of-the-art multi-modal clustering methods.
Contrastive learning has been applied successfully to learn vector representations of text. Previous research demonstrated that learning high-quality representations benefits from batch-wise contrastive loss with a large number of negatives. In pract ice, the technique of in-batch negative is used, where for each example in a batch, other batch examples positives will be taken as its negatives, avoiding encoding extra negatives. This, however, still conditions each examples loss on all batch examples and requires fitting the entire large batch into GPU memory. This paper introduces a gradient caching technique that decouples backpropagation between contrastive loss and the encoder, removing encoder backward pass data dependency along the batch dimension. As a result, gradients can be computed for one subset of the batch at a time, leading to almost constant memory usage.
174 - Guoshun Nan , Rui Qiao , Yao Xiao 2021
Video grounding aims to localize a moment from an untrimmed video for a given textual query. Existing approaches focus more on the alignment of visual and language stimuli with various likelihood-based matching or regression strategies, i.e., P(Y|X). Consequently, these models may suffer from spurious correlations between the language and video features due to the selection bias of the dataset. 1) To uncover the causality behind the model and data, we first propose a novel paradigm from the perspective of the causal inference, i.e., interventional video grounding (IVG) that leverages backdoor adjustment to deconfound the selection bias based on structured causal model (SCM) and do-calculus P(Y|do(X)). Then, we present a simple yet effective method to approximate the unobserved confounder as it cannot be directly sampled from the dataset. 2) Meanwhile, we introduce a dual contrastive learning approach (DCL) to better align the text and video by maximizing the mutual information (MI) between query and video clips, and the MI between start/end frames of a target moment and the others within a video to learn more informative visual representations. Experiments on three standard benchmarks show the effectiveness of our approaches. Our code is available on GitHub: https://github.com/nanguoshun/IVG.
Turn-level user satisfaction is one of the most important performance metrics for conversational agents. It can be used to monitor the agents performance and provide insights about defective user experiences. Moreover, a powerful satisfaction model c an be used as an objective function that a conversational agent continuously optimizes for. While end-to-end deep learning has shown promising results, having access to a large number of reliable annotated samples required by these methods remains challenging. In a large-scale conversational system, there is a growing number of newly developed skills, making the traditional data collection, annotation, and modeling process impractical due to the required annotation costs as well as the turnaround times. In this paper, we suggest a self-supervised contrastive learning approach that leverages the pool of unlabeled data to learn user-agent interactions. We show that the pre-trained models using the self-supervised objective are transferable to the user satisfaction prediction. In addition, we propose a novel few-shot transfer learning approach that ensures better transferability for very small sample sizes. The suggested few-shot method does not require any inner loop optimization process and is scalable to very large datasets and complex models. Based on our experiments using real-world data from a large-scale commercial system, the suggested approach is able to significantly reduce the required number of annotations, while improving the generalization on unseen out-of-domain skills.
While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universa l unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا