ﻻ يوجد ملخص باللغة العربية
We investigate the possibility that radio-bright active galactic nuclei (AGN) are responsible for the TeV--PeV neutrinos detected by IceCube. We use an unbinned maximum-likelihood-ratio method, 10 years of IceCube muon-track data, and 3388 radio-bright AGN selected from the Radio Fundamental Catalog. None of the AGN in the catalog have a large global significance. The two most significant sources have global significance of $simeq$ 1.5$sigma$ and 0.8$sigma$, though 4.1$sigma$ and 3.8$sigma$ local significance. Our stacking analyses show no significant correlation between the whole catalog and IceCube neutrinos. We infer from the null search that this catalog can account for at most 30% (95% CL) of the diffuse astrophysical neutrino flux measured by IceCube. Moreover, our results disagree with recent work that claimed a 4.1$sigma$ detection of neutrinos from the sources in this catalog, and we discuss the reasons of the difference.
The IceCube Neutrino Observatory has detected high-energy astrophysical neutrinos in the TeV-PeV range. These neutrinos have an isotropic distribution on the sky, and therefore, likely originate from extragalactic sources. Active Galactic Nuclei form
We propose a novel interpretation that gamma-rays from nearby radio galaxies are hadronic emission from magnetically arrested disks (MADs) around central black holes (BHs). The magnetic energy in MADs is higher than the thermal energy of the accretin
The IceCube collaboration reported a $sim 3.5sigma$ excess of $13pm5$ neutrino events in the direction of the blazar TXS 0506+56 during a $sim$6 month period in 2014-2015, as well as the ($sim3sigma$) detection of a high-energy muon neutrino during a
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a m
ANTARES is the largest high-energy neutrino telescope in the Northern Hemisphere. A search for neutrinos in coincidence with gamma-ray bursts using ANTARES data from late 2007 to 2011 is presented here. An extended maximum likelihood ratio search was