ﻻ يوجد ملخص باللغة العربية
Although there exist several libraries for deep learning on graphs, they are aiming at implementing basic operations for graph deep learning. In the research community, implementing and benchmarking various advanced tasks are still painful and time-consuming with existing libraries. To facilitate graph deep learning research, we introduce DIG: Dive into Graphs, a research-oriented library that integrates unified and extensible implementations of common graph deep learning algorithms for several advanced tasks. Currently, we consider graph generation, self-supervised learning on graphs, explainability of graph neural networks, and deep learning on 3D graphs. For each direction, we provide unified implementations of data interfaces, common algorithms, and evaluation metrics. Altogether, DIG is an extensible, open-source, and turnkey library for researchers to develop new methods and effortlessly compare with common baselines using widely used datasets and evaluation metrics. Source code is available at https://github.com/divelab/DIG.
Recent years have witnessed an upsurge of research interests and applications of machine learning on graphs. Automated machine learning (AutoML) on graphs is on the horizon to automatically design the optimal machine learning algorithm for a given gr
Federated learning (FL) is a rapidly growing research field in machine learning. However, existing FL libraries cannot adequately support diverse algorithmic development; inconsistent dataset and model usage make fair algorithm comparison challenging
We present Kaolin, a PyTorch library aiming to accelerate 3D deep learning research. Kaolin provides efficient implementations of differentiable 3D modules for use in deep learning systems. With functionality to load and preprocess several popular 3D
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed
Artificial Intelligence (AI) has rapidly emerged as a key disruptive technology in the 21st century. At the heart of modern AI lies Deep Learning (DL), an emerging class of algorithms that has enabled todays platforms and organizations to operate at