ﻻ يوجد ملخص باللغة العربية
Solar neutrino capture cross-section by 127I nucleus has been studied with taking into account the influence of the resonance structure of the nuclear strength function S(E). Three types of isobaric resonances: giant Gamow-Teller, analog resonance and low-lying Gamow-Teller pigmy resonances has been investigated on the framework of self-consistent theory of finite Fermi systems. The calculations have been performed considering the resonance structure of the charge-exchange strength function S(E). We analyze the effect of each resonance on the energy dependence of the cross-section. It has been shown that all high-lying resonances should be considered. Neutron emission process for high energy nuclear excitation leads to formation 126Xe isotope. We evaluate contribution from various sources of solar neutrinos to the 126Xe/127Xe isotopes ratio formed by energetic neutrinos. 126Xe/127Xe isotope ratio could be an indicator of high-energy boron neutrinos in the solar spectrum. We also discuss the uncertainties in the often used Fermi-functions calculations.
Alternative methods to calculate neutron capture cross sections on radioactive nuclei are reported using the theory of Inclusive Non-Elastic Breakup (INEB) developed by Hussein and McVoy [1]. The statistical coupled-channels theory proposed in Ref. [
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nu
Gamow-Teller (GT) transitions from high-spin isomers are studied using the sum-rule approach and the shell model. The GT transition strengths from the high-spin isomeric states show a stronger collectivity than those from the ground states in two $N=
Gamow-Teller (GT) and spin-dipole (SD) strength distributions of four doubly magic nuclei $^{48}$Ca, $^{90}$Zr, $^{132}$Sn and $^{208}$Pb are studied by the self-consistent Hartree-Fock plus random phase approximation (RPA) method. The Skyrme forces
The proportionality between differential cross sections at vanishing linear momentum transfer and Gamow-Teller transition strength, expressed in terms of the textit{unit cross section} ($hat{sigma}_{GT}$) was studied as a function of target mass numb