ﻻ يوجد ملخص باللغة العربية
Congenital heart disease (CHD) is the most common congenital abnormality associated with birth defects in the United States. Despite training efforts and substantial advancement in ultrasound technology over the past years, CHD remains an abnormality that is frequently missed during prenatal ultrasonography. Therefore, computer-aided detection of CHD can play a critical role in prenatal care by improving screening and diagnosis. Since many CHDs involve structural abnormalities, automatic segmentation of anatomical structures is an important step in the analysis of fetal echocardiograms. While existing methods mainly focus on the four-chamber view with a small number of structures, here we present a more comprehensive deep learning segmentation framework covering 14 anatomical structures in both three-vessel trachea and four-chamber views. Specifically, our framework enhances the V-Net with spatial dropout, group normalization, and deep supervision to train a segmentation model that can be applied on both views regardless of abnormalities. By identifying the pitfall of using the Dice loss when some labels are unavailable in some images, this framework integrates information from multiple views and is robust to missing structures due to anatomical anomalies, achieving an average Dice score of 79%.
In fetal Magnetic Resonance Imaging, Super Resolution Reconstruction (SRR) algorithms are becoming popular tools to obtain high-resolution 3D volume reconstructions from low-resolution stacks of 2D slices, acquired at different orientations. To be ef
Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. In this paper, we present a comprehensive thematic survey on medical image segmenta
Spinal cord tumors lead to neurological morbidity and mortality. Being able to obtain morphometric quantification (size, location, growth rate) of the tumor, edema, and cavity can result in improved monitoring and treatment planning. Such quantificat
Automated drusen segmentation in retinal optical coherence tomography (OCT) scans is relevant for understanding age-related macular degeneration (AMD) risk and progression. This task is usually performed by segmenting the top/bottom anatomical interf
Accurate image segmentation is crucial for medical imaging applications. The prevailing deep learning approaches typically rely on very large training datasets with high-quality manual annotations, which are often not available in medical imaging. We