ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge Intelligence for Empowering IoT-based Healthcare Systems

66   0   0.0 ( 0 )
 نشر من قبل Vahideh Hayyolalam
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The demand for real-time, affordable, and efficient smart healthcare services is increasing exponentially due to the technological revolution and burst of population. To meet the increasing demands on this critical infrastructure, there is a need for intelligent methods to cope with the existing obstacles in this area. In this regard, edge computing technology can reduce latency and energy consumption by moving processes closer to the data sources in comparison to the traditional centralized cloud and IoT-based healthcare systems. In addition, by bringing automated insights into the smart healthcare systems, artificial intelligence (AI) provides the possibility of detecting and predicting high-risk diseases in advance, decreasing medical costs for patients, and offering efficient treatments. The objective of this article is to highlight the benefits of the adoption of edge intelligent technology, along with AI in smart healthcare systems. Moreover, a novel smart healthcare model is proposed to boost the utilization of AI and edge technology in smart healthcare systems. Additionally, the paper discusses issues and research directions arising when integrating these different technologies together.



قيم البحث

اقرأ أيضاً

102 - Chenhao Xu , Yong Li , Yao Deng 2021
Federated learning (FL) utilizes edge computing devices to collaboratively train a shared model while each device can fully control its local data access. Generally, FL techniques focus on learning model on independent and identically distributed (ii d) dataset and cannot achieve satisfiable performance on non-iid datasets (e.g. learning a multi-class classifier but each client only has a single class dataset). Some personalized approaches have been proposed to mitigate non-iid issues. However, such approaches cannot handle underlying data distribution shift, namely data distribution skew, which is quite common in real scenarios (e.g. recommendation systems learn user behaviors which change over time). In this work, we provide a solution to the challenge by leveraging smart-contract with federated learning to build optimized, personalized deep learning models. Specifically, our approach utilizes smart contract to reach consensus among distributed trainers on the optimal weights of personalized models. We conduct experiments across multiple models (CNN and MLP) and multiple datasets (MNIST and CIFAR-10). The experimental results demonstrate that our personalized learning models can achieve better accuracy and faster convergence compared to classic federated and personalized learning. Compared with the model given by baseline FedAvg algorithm, the average accuracy of our personalized learning models is improved by 2% to 20%, and the convergence rate is about 2$times$ faster. Moreover, we also illustrate that our approach is secure against recent attack on distributed learning.
The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications with access to large volumes of healthcare data collected by IoT devices. However, the increasing demand for healthcare data privacy and security ma kes each IoT device an isolated island of data. Further, the limited computation and communication capacity of wearable healthcare devices restrict the application of vanilla federated learning. To this end, we propose an advanced federated learning framework to train deep neural networks, where the network is partitioned and allocated to IoT devices and a centralized server. Then most of the training computation is handled by the powerful server. The sparsification of activations and gradients significantly reduces the communication overhead. Empirical study have suggested that the proposed framework guarantees a low accuracy loss, while only requiring 0.2% of the synchronization traffic in vanilla federated learning.
The rapid increase in the percentage of chronic disease patients along with the recent pandemic pose immediate threats on healthcare expenditure and elevate causes of death. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, to improve services, access and scalability, while reducing costs. Reinforcement Learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for diverse applications and services. Thus, we conduct in this paper a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. This paper can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview for the I-health systems challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, Deep RL (DRL), and multi-agent RL models. After that, we provide a deep literature review for the applications of RL in I-health systems. In particular, three main areas have been tackled, i.e., edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and outline future research directions in driving the future success of RL in I-health systems, which opens the door for exploring some interesting and unsolved problems.
Ubiquitous intelligence has been widely recognized as a critical vision of the future sixth generation (6G) networks, which implies the intelligence over the whole network from the core to the edge including end devices. Nevertheless, fulfilling such vision, particularly the intelligence at the edge, is extremely challenging, due to the limited resources of edge devices as well as the ubiquitous coverage envisioned by 6G. To empower the edge intelligence, in this article, we propose a novel framework called AGIFL (Air-Ground Integrated Federated Learning), which organically integrates air-ground integrated networks and federated learning (FL). In the AGIFL, leveraging the flexible on-demand 3D deployment of aerial nodes such as unmanned aerial vehicles (UAVs), all the nodes can collaboratively train an effective learning model by FL. We also conduct a case study to evaluate the effect of two different deployment schemes of the UAV over the learning and network performance. Last but not the least, we highlight several technical challenges and future research directions in the AGIFL.
The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous data in IoT applications. However, the complexity-accuracy-delay dilemma persists: complex DNN models offer higher accuracy, but typical IoT devic es can barely afford the computation load, and the remedy of offloading the load to the cloud incurs long delay. In this paper, we address this challenge by proposing an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network. We also incorporate a parallelism policy training method to accelerate the training process by taking advantage of distributed models. We build an HEC testbed using real IoT devices, implement and evaluate our contextual-bandit approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset, and achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than the best (but inflexible) scheme.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا