Traditional numerical methods for calculating matrix eigenvalues are prohibitively expensive for high-dimensional problems. Randomized iterative methods allow for the estimation of a single dominant eigenvalue at reduced cost by leveraging repeated random sampling and averaging. We present a general approach to extending such methods for the estimation of multiple eigenvalues and demonstrate its performance for problems in quantum chemistry with matrices as large as 28 million by 28 million.
We develop K$omega$, an open-source linear algebra library for the shifted Krylov subspace methods. The methods solve a set of shifted linear equations $(z_k I-H)x^{(k)}=b, (k=0,1,2,...)$ for a given matrix $H$ and a vector $b$, simultaneously. The l
eading order of the operational cost is the same as that for a single equation. The shift invariance of the Krylov subspace is the mathematical foundation of the shifted Krylov subspace methods. Applications in materials science are presented to demonstrate the advantages of the algorithm over the standard Krylov subspace methods such as the Lanczos method. We introduce benchmark calculations of (i) an excited (optical) spectrum and (ii) intermediate eigenvalues by the contour integral on the complex plane. In combination with the quantum lattice solver $mathcal{H} Phi$, K$omega$ can realize parallel computation of excitation spectra and intermediate eigenvalues for various quantum lattice models.
Contour integration schemes are a valuable tool for the solution of difficult interior eigenvalue problems. However, the solution of many large linear systems with multiple right hand sides may prove a prohibitive computational expense. The number of
right hand sides, and thus, computational cost may be reduced if the projected subspace is created using multiple moments. In this work, we explore heuristics for the choice and application of moments with respect to various other important parameters in a contour integration scheme. We provide evidence for the expected performance, accuracy, and robustness of various schemes, showing that good heuristic choices can provide a scheme featuring good properties in all three of these measures.
We study the use of Krylov subspace recycling for the solution of a sequence of slowly-changing families of linear systems, where each family consists of shifted linear systems that differ in the coefficient matrix only by multiples of the identity.
Our aim is to explore the simultaneous solution of each family of shifted systems within the framework of subspace recycling, using one augmented subspace to extract candidate solutions for all the shifted systems. The ideal method would use the same augmented subspace for all systems and have fixed storage requirements, independent of the number of shifted systems per family. We show that a method satisfying both requirements cannot exist in this framework. As an alternative, we introduce two schemes. One constructs a separate deflation space for each shifted system but solves each family of shifted systems simultaneously. The other builds only one recycled subspace and constructs approximate corrections to the solutions of the shifted systems at each cycle of the iterative linear solver while only minimizing the base system residual. At convergence of the base system solution, we apply the method recursively to the remaining unconverged systems. We present numerical examples involving systems arising in lattice quantum chromodynamics.
We introduce a randomized algorithm, namely RCHOL, to construct an approximate Cholesky factorization for a given Laplacian matrix (a.k.a., graph Laplacian). From a graph perspective, the exact Cholesky factorization introduces a clique in the underl
ying graph after eliminating a row/column. By randomization, RCHOL only retains a sparse subset of the edges in the clique using a random sampling developed by Spielman and Kyng. We prove RCHOL is breakdown-free and apply it to solving large sparse linear systems with symmetric diagonally dominant matrices. In addition, we parallelize RCHOL based on the nested dissection ordering for shared-memory machines. We report numerical experiments that demonstrate the robustness and the scalability of RCHOL. For example, our parallel code scaled up to 64 threads on a single node for solving the 3D Poisson equation, discretized with the 7-point stencil on a $1024times 1024 times 1024$ grid, a problem that has one billion unknowns.
Multiresolution Matrix Factorization (MMF) was recently introduced as an alternative to the dominant low-rank paradigm in order to capture structure in matrices at multiple different scales. Using ideas from multiresolution analysis (MRA), MMF teased
out hierarchical structure in symmetric matrices by constructing a sequence of wavelet bases. While effective for such matrices, there is plenty of data that is more naturally represented as nonsymmetric matrices (e.g. directed graphs), but nevertheless has similar hierarchical structure. In this paper, we explore techniques for extending MMF to any square matrix. We validate our approach on numerous matrix compression tasks, demonstrating its efficacy compared to low-rank methods. Moreover, we also show that a combined low-rank and MMF approach, which amounts to removing a small global-scale component of the matrix and then extracting hierarchical structure from the residual, is even more effective than each of the two complementary methods for matrix compression.
Samuel M. Greene
,Robert J. Webber
,Timothy C. Berkelbach
.
(2021)
.
"Approximating matrix eigenvalues by randomized subspace iteration"
.
Samuel Greene
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا