ترغب بنشر مسار تعليمي؟ اضغط هنا

Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction

64   0   0.0 ( 0 )
 نشر من قبل Hao Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While convolutional neural networks have shown a tremendous impact on various computer vision tasks, they generally demonstrate limitations in explicitly modeling long-range dependencies due to the intrinsic locality of the convolution operation. Initially designed for natural language processing tasks, Transformers have emerged as alternative architectures with innate global self-attention mechanisms to capture long-range dependencies. In this paper, we propose TransDepth, an architecture that benefits from both convolutional neural networks and transformers. To avoid the network losing its ability to capture local-level details due to the adoption of transformers, we propose a novel decoder that employs attention mechanisms based on gates. Notably, this is the first paper that applies transformers to pixel-wise prediction problems involving continuous labels (i.e., monocular depth prediction and surface normal estimation). Extensive experiments demonstrate that the proposed TransDepth achieves state-of-the-art performance on three challenging datasets. Our code is available at: https://github.com/ygjwd12345/TransDepth.



قيم البحث

اقرأ أيضاً

Iris presentation attack detection (PAD) plays a vital role in iris recognition systems. Most existing CNN-based iris PAD solutions 1) perform only binary label supervision during the training of CNNs, serving global information learning but weakenin g the capture of local discriminative features, 2) prefer the stacked deeper convolutions or expert-designed networks, raising the risk of overfitting, 3) fuse multiple PAD systems or various types of features, increasing difficulty for deployment on mobile devices. Hence, we propose a novel attention-based deep pixel-wise binary supervision (A-PBS) method. Pixel-wise supervision is first able to capture the fine-grained pixel/patch-level cues. Then, the attention mechanism guides the network to automatically find regions that most contribute to an accurate PAD decision. Extensive experiments are performed on LivDet-Iris 2017 and three other publicly available databases to show the effectiveness and robustness of proposed A-PBS methods. For instance, the A-PBS model achieves an HTER of 6.50% on the IIITD-WVU database outperforming state-of-the-art methods.
DETR is a recently proposed Transformer-based method which views object detection as a set prediction problem and achieves state-of-the-art performance but demands extra-long training time to converge. In this paper, we investigate the causes of the optimization difficulty in the training of DETR. Our examinations reveal several factors contributing to the slow convergence of DETR, primarily the issues with the Hungarian loss and the Transformer cross attention mechanism. To overcome these issues we propose two solutions, namely, TSP-FCOS (Transformer-based Set Prediction with FCOS) and TSP-RCNN (Transformer-based Set Prediction with RCNN). Experimental results show that the proposed methods not only converge much faster than the original DETR, but also significantly outperform DETR and other baselines in terms of detection accuracy.
How to effectively and efficiently deal with spatio-temporal event streams, where the events are generally sparse and non-uniform and have the microsecond temporal resolution, is of great value and has various real-life applications. Spiking neural n etwork (SNN), as one of the brain-inspired event-triggered computing models, has the potential to extract effective spatio-temporal features from the event streams. However, when aggregating individual events into frames with a new higher temporal resolution, existing SNN models do not attach importance to that the serial frames have different signal-to-noise ratios since event streams are sparse and non-uniform. This situation interferes with the performance of existing SNNs. In this work, we propose a temporal-wise attention SNN (TA-SNN) model to learn frame-based representation for processing event streams. Concretely, we extend the attention concept to temporal-wise input to judge the significance of frames for the final decision at the training stage, and discard the irrelevant frames at the inference stage. We demonstrate that TA-SNN models improve the accuracy of event streams classification tasks. We also study the impact of multiple-scale temporal resolutions for frame-based representation. Our approach is tested on three different classification tasks: gesture recognition, image classification, and spoken digit recognition. We report the state-of-the-art results on these tasks, and get the essential improvement of accuracy (almost 19%) for gesture recognition with only 60 ms.
218 - Cunjun Yu , Xiao Ma , Jiawei Ren 2020
Understanding crowd motion dynamics is critical to real-world applications, e.g., surveillance systems and autonomous driving. This is challenging because it requires effectively modeling the socially aware crowd spatial interaction and complex tempo ral dependencies. We believe attention is the most important factor for trajectory prediction. In this paper, we present STAR, a Spatio-Temporal grAph tRansformer framework, which tackles trajectory prediction by only attention mechanisms. STAR models intra-graph crowd interaction by TGConv, a novel Transformer-based graph convolution mechanism. The inter-graph temporal dependencies are modeled by separate temporal Transformers. STAR captures complex spatio-temporal interactions by interleaving between spatial and temporal Transformers. To calibrate the temporal prediction for the long-lasting effect of disappeared pedestrians, we introduce a read-writable external memory module, consistently being updated by the temporal Transformer. We show that with only attention mechanism, STAR achieves state-of-the-art performance on 5 commonly used real-world pedestrian prediction datasets.
Many machine learning tasks such as multiple instance learning, 3D shape recognition, and few-shot image classification are defined on sets of instances. Since solutions to such problems do not depend on the order of elements of the set, models used to address them should be permutation invariant. We present an attention-based neural network module, the Set Transformer, specifically designed to model interactions among elements in the input set. The model consists of an encoder and a decoder, both of which rely on attention mechanisms. In an effort to reduce computational complexity, we introduce an attention scheme inspired by inducing point methods from sparse Gaussian process literature. It reduces the computation time of self-attention from quadratic to linear in the number of elements in the set. We show that our model is theoretically attractive and we evaluate it on a range of tasks, demonstrating the state-of-the-art performance compared to recent methods for set-structured data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا