ﻻ يوجد ملخص باللغة العربية
We report on the dynamical formation of exceptional degeneracies in basic correlation functions of non-integrable one- and two-dimensional systems quenched to the vicinity of a critical point. Remarkably, fine-tuned semi-metallic points in the phase diagram of the considered systems are thereby promoted to topologically robust non-Hermitian (NH) nodal phases emerging in the coherent long-time evolution of a dynamically equilibrating system. In the framework of non-equilibrium Greens function methods within the conserving second Born approximation, we predict observable signatures of these novel NH nodal phases in simple spectral functions as well as in the time-evolution of momentum distribution functions.
We show that hybrid Dirac and Weyl semimetals can be realized in a three-dimensional Luttinger semimetal with quadratic band touching (QBT). We illustrate this using periodic kicking scheme. In particular, we focus on a momentum-dependent drivings (n
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimeta
We study the interaction between elliptically polarized light and a three-dimensional Luttinger semimetal with quadratic band touching using Floquet theory. In the absence of light, the touching bands can have the same or the opposite signs of the cu
We demonstrate that a weakly disordered metal with short-range interactions exhibits a transition in the quantum chaotic dynamics when changing the temperature or the interaction strength. For weak interactions, the system displays exponential growth
We study the quench dynamics of a topologically trivial one-dimensional gapless wire following its sudden coupling to topological bound states. We find that as the bound states leak into and propagate through the wire, signatures of their topological