ترغب بنشر مسار تعليمي؟ اضغط هنا

Full non-LTE spectral line formation I. Setting the stage

61   0   0.0 ( 0 )
 نشر من قبل Fr\\'ed\\'eric Paletou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Paletou




اسأل ChatGPT حول البحث

Radiative transfer out of local thermodynamic equilibrium (LTE) has been increasingly adressed, mostly numerically, for about six decades now. However the standard non-LTE problem most often refers to the only deviation of the distribution of photons from their equilibrium i.e., Planckian, distribution. Hereafter we revisit after Oxenius (1986) the so-called full non-LTE problem, which considers to couple and therefore to solve self-consistently for deviations from equilibrium distributions of photons as well as for massive particles constituting the atmospheric plasma.



قيم البحث

اقرأ أيضاً

An international group of scientists has begun planning for the Planet Formation Imager (PFI, www.planetformationimager.org), a next-generation infrared interferometer array with the primary goal of imaging the active phases of planet formation in ne arby star forming regions and taking planetary system snapshots of young systems to understand exoplanet architectures. PFI will be sensitive to warm dust emission using mid-infrared capabilities made possible by precise fringe tracking in the near-infrared. An L/M band beam combiner will be especially sensitive to thermal emission from young exoplanets (and their circumplanetary disks) with a high spectral resolution mode to probe the kinematics of CO and H2O gas. In this brief White Paper, we summarize the main science goals of PFI, define a baseline PFI architecture that can achieve those goals, and identify key technical challenges that must be overcome before the dreams of PFI can be realized within the typical cost envelope of a major observatory. We also suggest activities over the next decade at the flagship US facilities (CHARA, NPOI, MROI) that will help make the Planet Formation Imager facility a reality. The key takeaway is that infrared interferometry will require new experimental telescope designs that can scale to 8 m-class with the potential to reduce per area costs by x10, a breakthrough that would also drive major advances across astronomy.
Carbon abundances in late-type stars are important in a variety of astrophysical contexts. However C i lines, one of the main abundance diagnostics, are sensitive to departures from local thermodynamic equilibrium (LTE). We present a model atom for n on-LTE analyses of C i lines, that uses a new, physically-motivated recipe for the rates of neutral hydrogen impact excitation. We analyse C i lines in the solar spectrum, employing a three-dimensional (3D) hydrodynamic model solar atmosphere and 3D non-LTE radiative transfer. We find negative non-LTE abundance corrections for C i lines in the solar photosphere, in accordance with previous studies, reaching up to around 0.1 dex in the disk-integrated flux. We also present the first fully consistent 3D non-LTE solar carbon abundance determination: we infer log $epsilon_{text{C}}$ = $8.44pm0.02$, in good agreement with the current standard value. Our models reproduce the observed solar centre-to-limb variations of various C i lines, without any adjustments to the rates of neutral hydrogen impact excitation, suggesting that the proposed recipe may be a solution to the long-standing problem of how to reliably model inelastic collisions with neutral hydrogen in late-type stellar atmospheres.
153 - N. Labrosse 2010
This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibri um) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.
114 - Y. Osorio 2011
The influence of the uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the electron collision data used in previous non-LTE ca lculations and compare them to recent calculations that use convergent close-coupling (CCC) techniques and to our own calculations using the R-matrix with pseudostates (RMPS) method. We find excellent agreement between rate coefficients from the CCC and RMPS calculations, and reasonable agreement between these data and the semi-empirical data used in non-LTE calculations up to now. The results of non-LTE calculations using the old and new data sets are compared and only small differences found: about 0.01 dex (~ 2%) or less in the abundance corrections. We therefore conclude that the influence on non-LTE calculations of uncertainties in the electron collision data is negligible. Indeed, together with the collision data for the charge exchange process Li(3s) + H <-> Li^+ + H^- now available, and barring the existence of an unknown important collisional process, the collisional data in general is not a source of significant uncertainty in non-LTE Li line formation calculations.
Hydrogen Balmer lines are commonly used as spectroscopic effective temperature diagnostics of late-type stars. However, the absolute accuracy of classical methods that are based on one-dimensional (1D) hydrostatic model atmospheres and local thermody namic equilibrium (LTE) is still unclear. To investigate this, we carry out 3D non-LTE calculations for the Balmer lines, performed, for the first time, over an extensive grid of 3D hydrodynamic STAGGER model atmospheres. For H$alpha$, H$beta$, and H$gamma$, we find significant 1D non-LTE versus 3D non-LTE differences (3D effects): the outer wings tend to be stronger in 3D models, particularly for H$gamma$, while the inner wings can be weaker in 3D models, particularly for H$alpha$. For H$alpha$, we also find significant 3D LTE versus 3D non-LTE differences (non-LTE effects): in warmer stars ($T_{text{eff}}approx6500$K) the inner wings tend to be weaker in non-LTE models, while at lower effective temperatures ($T_{text{eff}}approx4500$K) the inner wings can be stronger in non-LTE models; the non-LTE effects are more severe at lower metallicities. We test our 3D non-LTE models against observations of well-studied benchmark stars. For the Sun, we infer concordant effective temperatures from H$alpha$, H$beta$, and H$gamma$; however the value is too low by around 50K which could signal residual modelling shortcomings. For other benchmark stars, our 3D non-LTE models generally reproduce the effective temperatures to within $1sigma$ uncertainties. For H$alpha$, the absolute 3D effects and non-LTE effects can separately reach around 100K, in terms of inferred effective temperatures. For metal-poor turn-off stars, 1D LTE models of H$alpha$ can underestimate effective temperatures by around 150K. Our 3D non-LTE model spectra are publicly available, and can be used for more reliable spectroscopic effective temperature determinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا